An enhanced variant effect predictor based on a deep generative model and the Born-Again Networks

Abstract The development of an accurate and reliable variant effect prediction tool is important for research in human genetic diseases. A large number of predictors have been developed towards this goal, yet many of these predictors suffer from the problem of data circularity. Here we present MTBAN...

Full description

Saved in:
Bibliographic Details
Main Authors: Ha Young Kim, Woosung Jeon, Dongsup Kim
Format: article
Language:EN
Published: Nature Portfolio 2021
Subjects:
R
Q
Online Access:https://doaj.org/article/0732861a9c9b4e0a9f75b5da1897d2f6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The development of an accurate and reliable variant effect prediction tool is important for research in human genetic diseases. A large number of predictors have been developed towards this goal, yet many of these predictors suffer from the problem of data circularity. Here we present MTBAN (Mutation effect predictor using the Temporal convolutional network and the Born-Again Networks), a method for predicting the deleteriousness of variants. We apply a form of knowledge distillation technique known as the Born-Again Networks (BAN) to a previously developed deep autoregressive generative model, mutationTCN, to achieve an improved performance in variant effect prediction. As the model is fully unsupervised and trained only on the evolutionarily related sequences of a protein, it does not suffer from the problem of data circularity which is common across supervised predictors. When evaluated on a test dataset consisting of deleterious and benign human protein variants, MTBAN shows an outstanding predictive ability compared to other well-known variant effect predictors. We also offer a user-friendly web server to predict variant effects using MTBAN, freely accessible at http://mtban.kaist.ac.kr . To our knowledge, MTBAN is the first variant effect prediction tool based on a deep generative model that provides a user-friendly web server for the prediction of deleteriousness of variants.