An enhanced variant effect predictor based on a deep generative model and the Born-Again Networks
Abstract The development of an accurate and reliable variant effect prediction tool is important for research in human genetic diseases. A large number of predictors have been developed towards this goal, yet many of these predictors suffer from the problem of data circularity. Here we present MTBAN...
Guardado en:
Autores principales: | Ha Young Kim, Woosung Jeon, Dongsup Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0732861a9c9b4e0a9f75b5da1897d2f6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Autonomous molecule generation using reinforcement learning and docking to develop potential novel inhibitors
por: Woosung Jeon, et al.
Publicado: (2020) -
“Once Again Never Again?”
por: Thomas G. Weiss
Publicado: (2009) -
Spartan Suspicions and the Massacre, Again
por: Annalisa Paradiso
Publicado: (2017) -
Connectivity-informed drainage network generation using deep convolution generative adversarial networks
por: Sung Eun Kim, et al.
Publicado: (2021) -
The basic ergodic theorems, yet again
por: Bochi,Jairo
Publicado: (2018)