Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm
Satellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combina...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0732d090664346cbb940767f8622237c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0732d090664346cbb940767f8622237c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0732d090664346cbb940767f8622237c2021-11-11T18:54:30ZSatellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm10.3390/rs132143512072-4292https://doaj.org/article/0732d090664346cbb940767f8622237c2021-10-01T00:00:00Zhttps://www.mdpi.com/2072-4292/13/21/4351https://doaj.org/toc/2072-4292Satellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification of satellite images. The HFEL uses three different types of Convolutional Neural Networks (CNN), namely AlexNet, LeNet-5 and a residual network (ResNet), to extract the appropriate features from images of the hierarchical framework. Additionally, the optimal features from the feature set are extracted using the Correlation Coefficient-Based Gravitational Search Algorithm (CCGSA). Further, the Multi Support Vector Machine (MSVM) is used to classify the satellite images by extracted features from the fully connected layers of the CNN and selected features of the CCGSA. Hence, the combination of HFEL and CCGSA is used to obtain the precise classification over different datasets such as the SAT-4, SAT-6 and Eurosat datasets. The performance of the proposed HFEL–CCGSA is analyzed in terms of accuracy, precision and recall. The experimental results show that the HFEL–CCGSA method provides effective classification over the satellite images. The classification accuracy of the HFEL–CCGSA method is 99.99%, which is high when compared to AlexNet, LeNet-5 and ResNet.Kowsalya ThiagarajanMukunthan Manapakkam AnandanAndrzej StatecznyParameshachari Bidare DivakarachariHemalatha Kivudujogappa LingappaMDPI AGarticleaccuracyConvolutional Neural NetworksCorrelation Coefficient-Based Gravitational Search Algorithmensemble learninghierarchical frameworksatellite image classificationScienceQENRemote Sensing, Vol 13, Iss 4351, p 4351 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
accuracy Convolutional Neural Networks Correlation Coefficient-Based Gravitational Search Algorithm ensemble learning hierarchical framework satellite image classification Science Q |
spellingShingle |
accuracy Convolutional Neural Networks Correlation Coefficient-Based Gravitational Search Algorithm ensemble learning hierarchical framework satellite image classification Science Q Kowsalya Thiagarajan Mukunthan Manapakkam Anandan Andrzej Stateczny Parameshachari Bidare Divakarachari Hemalatha Kivudujogappa Lingappa Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm |
description |
Satellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification of satellite images. The HFEL uses three different types of Convolutional Neural Networks (CNN), namely AlexNet, LeNet-5 and a residual network (ResNet), to extract the appropriate features from images of the hierarchical framework. Additionally, the optimal features from the feature set are extracted using the Correlation Coefficient-Based Gravitational Search Algorithm (CCGSA). Further, the Multi Support Vector Machine (MSVM) is used to classify the satellite images by extracted features from the fully connected layers of the CNN and selected features of the CCGSA. Hence, the combination of HFEL and CCGSA is used to obtain the precise classification over different datasets such as the SAT-4, SAT-6 and Eurosat datasets. The performance of the proposed HFEL–CCGSA is analyzed in terms of accuracy, precision and recall. The experimental results show that the HFEL–CCGSA method provides effective classification over the satellite images. The classification accuracy of the HFEL–CCGSA method is 99.99%, which is high when compared to AlexNet, LeNet-5 and ResNet. |
format |
article |
author |
Kowsalya Thiagarajan Mukunthan Manapakkam Anandan Andrzej Stateczny Parameshachari Bidare Divakarachari Hemalatha Kivudujogappa Lingappa |
author_facet |
Kowsalya Thiagarajan Mukunthan Manapakkam Anandan Andrzej Stateczny Parameshachari Bidare Divakarachari Hemalatha Kivudujogappa Lingappa |
author_sort |
Kowsalya Thiagarajan |
title |
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm |
title_short |
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm |
title_full |
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm |
title_fullStr |
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm |
title_full_unstemmed |
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm |
title_sort |
satellite image classification using a hierarchical ensemble learning and correlation coefficient-based gravitational search algorithm |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/0732d090664346cbb940767f8622237c |
work_keys_str_mv |
AT kowsalyathiagarajan satelliteimageclassificationusingahierarchicalensemblelearningandcorrelationcoefficientbasedgravitationalsearchalgorithm AT mukunthanmanapakkamanandan satelliteimageclassificationusingahierarchicalensemblelearningandcorrelationcoefficientbasedgravitationalsearchalgorithm AT andrzejstateczny satelliteimageclassificationusingahierarchicalensemblelearningandcorrelationcoefficientbasedgravitationalsearchalgorithm AT parameshacharibidaredivakarachari satelliteimageclassificationusingahierarchicalensemblelearningandcorrelationcoefficientbasedgravitationalsearchalgorithm AT hemalathakivudujogappalingappa satelliteimageclassificationusingahierarchicalensemblelearningandcorrelationcoefficientbasedgravitationalsearchalgorithm |
_version_ |
1718431626120134656 |