Machine Learning Technique to Improve an Impedance Matching Characteristic of a Bent Monopole Antenna
We designed the wire monopole antenna bent at three points by applying a machine learning technique to achieve a good impedance matching characteristic. After performing the deep neural network (DNN)-based training, we validated our machine learning model by evaluating mean squared error and R-squar...
Guardado en:
Autores principales: | Jaeyul Choo, Pho Thi Ha Anh, Yong-Hwa Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/07422380960943528cab54991dc2947c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Design of a Printed 5G Monopole Antenna on Vehicle Window Glass Using Parasitic Elements and a Lattice-Structure Reflector for Gain Enhancement
por: Changhyeon Im, et al.
Publicado: (2021) -
A rhomboid-shaped printed monopole antenna for wideband circular polarization
por: Lwin Zaw Myo, et al.
Publicado: (2021) -
A shorting-pin based compact meander multiband printed monopole antenna
por: Jeremiah O. Abolade, et al.
Publicado: (2021) -
Study of Mesh Pattern for Optically Transparent Flexible Antenna with Feedline
por: Seulgi Yu, et al.
Publicado: (2021) -
Design of an On-Glass 5G Monopole Antenna for a Vehicle Window Glass
por: Doyoung Jang, et al.
Publicado: (2021)