Genome-Wide Identification and Gene Expression Analysis of Acyl-Activating Enzymes Superfamily in Tomato (Solanum lycopersicum) Under Aluminum Stress

In response to changing environments, plants regulate gene expression and subsequent metabolism to acclimate and survive. A superfamily of acyl-activating enzymes (AAEs) has been observed in every class of creatures on planet. Some of plant AAE genes have been identified and functionally characteriz...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jian Feng Jin, Qi Yu He, Peng Fei Li, He Qiang Lou, Wei Wei Chen, Jian Li Yang
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/0765ccc6da0643b5999c352d059e243d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0765ccc6da0643b5999c352d059e243d
record_format dspace
spelling oai:doaj.org-article:0765ccc6da0643b5999c352d059e243d2021-12-02T09:55:27ZGenome-Wide Identification and Gene Expression Analysis of Acyl-Activating Enzymes Superfamily in Tomato (Solanum lycopersicum) Under Aluminum Stress1664-462X10.3389/fpls.2021.754147https://doaj.org/article/0765ccc6da0643b5999c352d059e243d2021-12-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fpls.2021.754147/fullhttps://doaj.org/toc/1664-462XIn response to changing environments, plants regulate gene expression and subsequent metabolism to acclimate and survive. A superfamily of acyl-activating enzymes (AAEs) has been observed in every class of creatures on planet. Some of plant AAE genes have been identified and functionally characterized to be involved in growth, development, biotic, and abiotic stresses via mediating diverse metabolic pathways. However, less information is available about AAEs superfamily in tomato (Solanum lycopersicum), the highest value fruit and vegetable crop globally. In this study, we aimed to identify tomato AAEs superfamily and investigate potential functions with respect to aluminum (Al) stress that represents one of the major factors limiting crop productivity on acid soils worldwide. Fifty-three AAE genes of tomato were identified and named on the basis of phylogenetic relationships between Arabidopsis and tomato. The phylogenetic analysis showed that AAEs could be classified into six clades; however, clade III contains no AAE genes of tomato. Synteny analyses revealed tomato vegetable paralogs and Arabidopsis orthologs. The RNA-seq and quantitative reverse-transcriptase PCR (qRT-PCR) analysis indicated that 9 out of 53 AAEs genes were significantly up- or downregulated by Al stress. Numerous cis-acting elements implicated in biotic and abiotic stresses were detected in the promoter regions of SlAAEs. As the most abundantly expressed gene in root apex and highly induced by Al, there are many potential STOP1 cis-acting elements present in the promoter of SlAAE3-1, and its expression in root apex was specific to Al. Finally, transgenic tobacco lines overexpressing SlAAE3-1 displayed increased tolerance to Al. Altogether, our results pave the way for further studies on the functional characterization of SlAAE genes in tomato with a wish of improvement in tomato crop in the future.Jian Feng JinQi Yu HePeng Fei LiHe Qiang LouWei Wei ChenWei Wei ChenJian Li YangFrontiers Media S.A.articleAAEs superfamilyabiotic stressAl stresscarboxylic acidorganic acidoxalatePlant cultureSB1-1110ENFrontiers in Plant Science, Vol 12 (2021)
institution DOAJ
collection DOAJ
language EN
topic AAEs superfamily
abiotic stress
Al stress
carboxylic acid
organic acid
oxalate
Plant culture
SB1-1110
spellingShingle AAEs superfamily
abiotic stress
Al stress
carboxylic acid
organic acid
oxalate
Plant culture
SB1-1110
Jian Feng Jin
Qi Yu He
Peng Fei Li
He Qiang Lou
Wei Wei Chen
Wei Wei Chen
Jian Li Yang
Genome-Wide Identification and Gene Expression Analysis of Acyl-Activating Enzymes Superfamily in Tomato (Solanum lycopersicum) Under Aluminum Stress
description In response to changing environments, plants regulate gene expression and subsequent metabolism to acclimate and survive. A superfamily of acyl-activating enzymes (AAEs) has been observed in every class of creatures on planet. Some of plant AAE genes have been identified and functionally characterized to be involved in growth, development, biotic, and abiotic stresses via mediating diverse metabolic pathways. However, less information is available about AAEs superfamily in tomato (Solanum lycopersicum), the highest value fruit and vegetable crop globally. In this study, we aimed to identify tomato AAEs superfamily and investigate potential functions with respect to aluminum (Al) stress that represents one of the major factors limiting crop productivity on acid soils worldwide. Fifty-three AAE genes of tomato were identified and named on the basis of phylogenetic relationships between Arabidopsis and tomato. The phylogenetic analysis showed that AAEs could be classified into six clades; however, clade III contains no AAE genes of tomato. Synteny analyses revealed tomato vegetable paralogs and Arabidopsis orthologs. The RNA-seq and quantitative reverse-transcriptase PCR (qRT-PCR) analysis indicated that 9 out of 53 AAEs genes were significantly up- or downregulated by Al stress. Numerous cis-acting elements implicated in biotic and abiotic stresses were detected in the promoter regions of SlAAEs. As the most abundantly expressed gene in root apex and highly induced by Al, there are many potential STOP1 cis-acting elements present in the promoter of SlAAE3-1, and its expression in root apex was specific to Al. Finally, transgenic tobacco lines overexpressing SlAAE3-1 displayed increased tolerance to Al. Altogether, our results pave the way for further studies on the functional characterization of SlAAE genes in tomato with a wish of improvement in tomato crop in the future.
format article
author Jian Feng Jin
Qi Yu He
Peng Fei Li
He Qiang Lou
Wei Wei Chen
Wei Wei Chen
Jian Li Yang
author_facet Jian Feng Jin
Qi Yu He
Peng Fei Li
He Qiang Lou
Wei Wei Chen
Wei Wei Chen
Jian Li Yang
author_sort Jian Feng Jin
title Genome-Wide Identification and Gene Expression Analysis of Acyl-Activating Enzymes Superfamily in Tomato (Solanum lycopersicum) Under Aluminum Stress
title_short Genome-Wide Identification and Gene Expression Analysis of Acyl-Activating Enzymes Superfamily in Tomato (Solanum lycopersicum) Under Aluminum Stress
title_full Genome-Wide Identification and Gene Expression Analysis of Acyl-Activating Enzymes Superfamily in Tomato (Solanum lycopersicum) Under Aluminum Stress
title_fullStr Genome-Wide Identification and Gene Expression Analysis of Acyl-Activating Enzymes Superfamily in Tomato (Solanum lycopersicum) Under Aluminum Stress
title_full_unstemmed Genome-Wide Identification and Gene Expression Analysis of Acyl-Activating Enzymes Superfamily in Tomato (Solanum lycopersicum) Under Aluminum Stress
title_sort genome-wide identification and gene expression analysis of acyl-activating enzymes superfamily in tomato (solanum lycopersicum) under aluminum stress
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/0765ccc6da0643b5999c352d059e243d
work_keys_str_mv AT jianfengjin genomewideidentificationandgeneexpressionanalysisofacylactivatingenzymessuperfamilyintomatosolanumlycopersicumunderaluminumstress
AT qiyuhe genomewideidentificationandgeneexpressionanalysisofacylactivatingenzymessuperfamilyintomatosolanumlycopersicumunderaluminumstress
AT pengfeili genomewideidentificationandgeneexpressionanalysisofacylactivatingenzymessuperfamilyintomatosolanumlycopersicumunderaluminumstress
AT heqianglou genomewideidentificationandgeneexpressionanalysisofacylactivatingenzymessuperfamilyintomatosolanumlycopersicumunderaluminumstress
AT weiweichen genomewideidentificationandgeneexpressionanalysisofacylactivatingenzymessuperfamilyintomatosolanumlycopersicumunderaluminumstress
AT weiweichen genomewideidentificationandgeneexpressionanalysisofacylactivatingenzymessuperfamilyintomatosolanumlycopersicumunderaluminumstress
AT jianliyang genomewideidentificationandgeneexpressionanalysisofacylactivatingenzymessuperfamilyintomatosolanumlycopersicumunderaluminumstress
_version_ 1718397868122832896