On Multi-User Deep-Learning-Based Non-Coherent DPSK Multiple-Symbol Differential Detection in Massive MIMO Systems
In view of reducing the complexity of signal detection in massive multiple-input multiple-output (MIMO) receivers, the use of non-coherent detection is favored over usual coherent techniques that require complex channel estimation. In this paper, a deep-learning approach to implement non-coherent mu...
Guardado en:
Autores principales: | Omnia Mahmoud, Ahmed El-Sayed El-Mahdy, Robert F. H. Fischer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/076884676cff42f6af42902f0fa5a644 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Combined Deep Learning and SOR Detection Technique for High Reliability in Massive MIMO Systems
por: Jun-Yong Jang, et al.
Publicado: (2021) -
Scalable user selection in FDD massive MIMO
por: Xing Zhang, et al.
Publicado: (2021) -
Microstrip Patch Antenna System With Enhanced Inter-Port Isolation for Full-Duplex/MIMO Applications
por: Jogesh Chandra Dash, et al.
Publicado: (2021) -
Hybrid precoding for mmWave massive MU-MIMO systems with overlapped subarray: A modified GLRAM approach
por: Ting Ding, et al.
Publicado: (2021) -
Heuristic Radio Resource Management for Massive MIMO in Satellite Broadband Communication Networks
por: Piero Angeletti, et al.
Publicado: (2021)