Power of data in quantum machine learning

Expectations for quantum machine learning are high, but there is currently a lack of rigorous results on which scenarios would actually exhibit a quantum advantage. Here, the authors show how to tell, for a given dataset, whether a quantum model would give any prediction advantage over a classical o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut Neven, Jarrod R. McClean
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/076ad8aa820c4993a8091c6ffbf839db
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Expectations for quantum machine learning are high, but there is currently a lack of rigorous results on which scenarios would actually exhibit a quantum advantage. Here, the authors show how to tell, for a given dataset, whether a quantum model would give any prediction advantage over a classical one.