Power of data in quantum machine learning

Expectations for quantum machine learning are high, but there is currently a lack of rigorous results on which scenarios would actually exhibit a quantum advantage. Here, the authors show how to tell, for a given dataset, whether a quantum model would give any prediction advantage over a classical o...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut Neven, Jarrod R. McClean
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/076ad8aa820c4993a8091c6ffbf839db
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
id oai:doaj.org-article:076ad8aa820c4993a8091c6ffbf839db
record_format dspace
spelling oai:doaj.org-article:076ad8aa820c4993a8091c6ffbf839db2021-12-02T17:02:04ZPower of data in quantum machine learning10.1038/s41467-021-22539-92041-1723https://doaj.org/article/076ad8aa820c4993a8091c6ffbf839db2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22539-9https://doaj.org/toc/2041-1723Expectations for quantum machine learning are high, but there is currently a lack of rigorous results on which scenarios would actually exhibit a quantum advantage. Here, the authors show how to tell, for a given dataset, whether a quantum model would give any prediction advantage over a classical one.Hsin-Yuan HuangMichael BroughtonMasoud MohseniRyan BabbushSergio BoixoHartmut NevenJarrod R. McCleanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Hsin-Yuan Huang
Michael Broughton
Masoud Mohseni
Ryan Babbush
Sergio Boixo
Hartmut Neven
Jarrod R. McClean
Power of data in quantum machine learning
description Expectations for quantum machine learning are high, but there is currently a lack of rigorous results on which scenarios would actually exhibit a quantum advantage. Here, the authors show how to tell, for a given dataset, whether a quantum model would give any prediction advantage over a classical one.
format article
author Hsin-Yuan Huang
Michael Broughton
Masoud Mohseni
Ryan Babbush
Sergio Boixo
Hartmut Neven
Jarrod R. McClean
author_facet Hsin-Yuan Huang
Michael Broughton
Masoud Mohseni
Ryan Babbush
Sergio Boixo
Hartmut Neven
Jarrod R. McClean
author_sort Hsin-Yuan Huang
title Power of data in quantum machine learning
title_short Power of data in quantum machine learning
title_full Power of data in quantum machine learning
title_fullStr Power of data in quantum machine learning
title_full_unstemmed Power of data in quantum machine learning
title_sort power of data in quantum machine learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/076ad8aa820c4993a8091c6ffbf839db
work_keys_str_mv AT hsinyuanhuang powerofdatainquantummachinelearning
AT michaelbroughton powerofdatainquantummachinelearning
AT masoudmohseni powerofdatainquantummachinelearning
AT ryanbabbush powerofdatainquantummachinelearning
AT sergioboixo powerofdatainquantummachinelearning
AT hartmutneven powerofdatainquantummachinelearning
AT jarrodrmcclean powerofdatainquantummachinelearning
_version_ 1718381948958670848