Power of data in quantum machine learning

Expectations for quantum machine learning are high, but there is currently a lack of rigorous results on which scenarios would actually exhibit a quantum advantage. Here, the authors show how to tell, for a given dataset, whether a quantum model would give any prediction advantage over a classical o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut Neven, Jarrod R. McClean
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/076ad8aa820c4993a8091c6ffbf839db
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:076ad8aa820c4993a8091c6ffbf839db
record_format dspace
spelling oai:doaj.org-article:076ad8aa820c4993a8091c6ffbf839db2021-12-02T17:02:04ZPower of data in quantum machine learning10.1038/s41467-021-22539-92041-1723https://doaj.org/article/076ad8aa820c4993a8091c6ffbf839db2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22539-9https://doaj.org/toc/2041-1723Expectations for quantum machine learning are high, but there is currently a lack of rigorous results on which scenarios would actually exhibit a quantum advantage. Here, the authors show how to tell, for a given dataset, whether a quantum model would give any prediction advantage over a classical one.Hsin-Yuan HuangMichael BroughtonMasoud MohseniRyan BabbushSergio BoixoHartmut NevenJarrod R. McCleanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Hsin-Yuan Huang
Michael Broughton
Masoud Mohseni
Ryan Babbush
Sergio Boixo
Hartmut Neven
Jarrod R. McClean
Power of data in quantum machine learning
description Expectations for quantum machine learning are high, but there is currently a lack of rigorous results on which scenarios would actually exhibit a quantum advantage. Here, the authors show how to tell, for a given dataset, whether a quantum model would give any prediction advantage over a classical one.
format article
author Hsin-Yuan Huang
Michael Broughton
Masoud Mohseni
Ryan Babbush
Sergio Boixo
Hartmut Neven
Jarrod R. McClean
author_facet Hsin-Yuan Huang
Michael Broughton
Masoud Mohseni
Ryan Babbush
Sergio Boixo
Hartmut Neven
Jarrod R. McClean
author_sort Hsin-Yuan Huang
title Power of data in quantum machine learning
title_short Power of data in quantum machine learning
title_full Power of data in quantum machine learning
title_fullStr Power of data in quantum machine learning
title_full_unstemmed Power of data in quantum machine learning
title_sort power of data in quantum machine learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/076ad8aa820c4993a8091c6ffbf839db
work_keys_str_mv AT hsinyuanhuang powerofdatainquantummachinelearning
AT michaelbroughton powerofdatainquantummachinelearning
AT masoudmohseni powerofdatainquantummachinelearning
AT ryanbabbush powerofdatainquantummachinelearning
AT sergioboixo powerofdatainquantummachinelearning
AT hartmutneven powerofdatainquantummachinelearning
AT jarrodrmcclean powerofdatainquantummachinelearning
_version_ 1718381948958670848