Power of data in quantum machine learning
Expectations for quantum machine learning are high, but there is currently a lack of rigorous results on which scenarios would actually exhibit a quantum advantage. Here, the authors show how to tell, for a given dataset, whether a quantum model would give any prediction advantage over a classical o...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/076ad8aa820c4993a8091c6ffbf839db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:076ad8aa820c4993a8091c6ffbf839db |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:076ad8aa820c4993a8091c6ffbf839db2021-12-02T17:02:04ZPower of data in quantum machine learning10.1038/s41467-021-22539-92041-1723https://doaj.org/article/076ad8aa820c4993a8091c6ffbf839db2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22539-9https://doaj.org/toc/2041-1723Expectations for quantum machine learning are high, but there is currently a lack of rigorous results on which scenarios would actually exhibit a quantum advantage. Here, the authors show how to tell, for a given dataset, whether a quantum model would give any prediction advantage over a classical one.Hsin-Yuan HuangMichael BroughtonMasoud MohseniRyan BabbushSergio BoixoHartmut NevenJarrod R. McCleanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Hsin-Yuan Huang Michael Broughton Masoud Mohseni Ryan Babbush Sergio Boixo Hartmut Neven Jarrod R. McClean Power of data in quantum machine learning |
description |
Expectations for quantum machine learning are high, but there is currently a lack of rigorous results on which scenarios would actually exhibit a quantum advantage. Here, the authors show how to tell, for a given dataset, whether a quantum model would give any prediction advantage over a classical one. |
format |
article |
author |
Hsin-Yuan Huang Michael Broughton Masoud Mohseni Ryan Babbush Sergio Boixo Hartmut Neven Jarrod R. McClean |
author_facet |
Hsin-Yuan Huang Michael Broughton Masoud Mohseni Ryan Babbush Sergio Boixo Hartmut Neven Jarrod R. McClean |
author_sort |
Hsin-Yuan Huang |
title |
Power of data in quantum machine learning |
title_short |
Power of data in quantum machine learning |
title_full |
Power of data in quantum machine learning |
title_fullStr |
Power of data in quantum machine learning |
title_full_unstemmed |
Power of data in quantum machine learning |
title_sort |
power of data in quantum machine learning |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/076ad8aa820c4993a8091c6ffbf839db |
work_keys_str_mv |
AT hsinyuanhuang powerofdatainquantummachinelearning AT michaelbroughton powerofdatainquantummachinelearning AT masoudmohseni powerofdatainquantummachinelearning AT ryanbabbush powerofdatainquantummachinelearning AT sergioboixo powerofdatainquantummachinelearning AT hartmutneven powerofdatainquantummachinelearning AT jarrodrmcclean powerofdatainquantummachinelearning |
_version_ |
1718381948958670848 |