Power of data in quantum machine learning
Expectations for quantum machine learning are high, but there is currently a lack of rigorous results on which scenarios would actually exhibit a quantum advantage. Here, the authors show how to tell, for a given dataset, whether a quantum model would give any prediction advantage over a classical o...
Guardado en:
Autores principales: | Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut Neven, Jarrod R. McClean |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/076ad8aa820c4993a8091c6ffbf839db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Barren plateaus in quantum neural network training landscapes
por: Jarrod R. McClean, et al.
Publicado: (2018) -
Decoding quantum errors with subspace expansions
por: Jarrod R. McClean, et al.
Publicado: (2020) -
Machine learning of high dimensional data on a noisy quantum processor
por: Evan Peters, et al.
Publicado: (2021) -
Virtual Distillation for Quantum Error Mitigation
por: William J. Huggins, et al.
Publicado: (2021) -
Low rank representations for quantum simulation of electronic structure
por: Mario Motta, et al.
Publicado: (2021)