Microstructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates
The flow behavior and microstructure change of the Ti-55511 alloy are investigated by thermal compression experiments with stepped strain rates. The phase transformation features, the dynamic recrystallization (DRX) behavior of the β matrix, the dynamic spheroidization mechanism of the lamellar α ph...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/07707123a3e643a28536c3cf6fa50dd8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:07707123a3e643a28536c3cf6fa50dd8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:07707123a3e643a28536c3cf6fa50dd82021-11-25T18:13:15ZMicrostructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates10.3390/ma142267501996-1944https://doaj.org/article/07707123a3e643a28536c3cf6fa50dd82021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/22/6750https://doaj.org/toc/1996-1944The flow behavior and microstructure change of the Ti-55511 alloy are investigated by thermal compression experiments with stepped strain rates. The phase transformation features, the dynamic recrystallization (DRX) behavior of the β matrix, the dynamic spheroidization mechanism of the lamellar α phase and the evolution of the β sub-grain size are quantitatively analyzed. A unified constitutive model is constructed to characterize the hot deformation features of the Ti-55511 alloy. In the established model, the work hardening effect is taken into account by involving the coupled effects of the equiaxed and lamellar α phases, as well as β substructures. The dynamic softening mechanisms including the dynamic recovery (DRV), DRX and dynamic spheroidization mechanisms are also considered. The material parameters are optimized by the multi-objective algorithm in the MATLAB toolbox. The consistency between the predicted and experimental data indicates that the developed unified model can accurately describe the flow features and microstructure evolution of the hot compressed Ti-55511 at stepped strain rates.Gang SuZhong YunYong-Cheng LinDao-Guang HeSong ZhangZi-Jian ChenMDPI AGarticletitanium alloyflow behaviorconstitutive modelmicrostructuresoftening mechanismsTechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6750, p 6750 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
titanium alloy flow behavior constitutive model microstructure softening mechanisms Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
spellingShingle |
titanium alloy flow behavior constitutive model microstructure softening mechanisms Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 Gang Su Zhong Yun Yong-Cheng Lin Dao-Guang He Song Zhang Zi-Jian Chen Microstructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates |
description |
The flow behavior and microstructure change of the Ti-55511 alloy are investigated by thermal compression experiments with stepped strain rates. The phase transformation features, the dynamic recrystallization (DRX) behavior of the β matrix, the dynamic spheroidization mechanism of the lamellar α phase and the evolution of the β sub-grain size are quantitatively analyzed. A unified constitutive model is constructed to characterize the hot deformation features of the Ti-55511 alloy. In the established model, the work hardening effect is taken into account by involving the coupled effects of the equiaxed and lamellar α phases, as well as β substructures. The dynamic softening mechanisms including the dynamic recovery (DRV), DRX and dynamic spheroidization mechanisms are also considered. The material parameters are optimized by the multi-objective algorithm in the MATLAB toolbox. The consistency between the predicted and experimental data indicates that the developed unified model can accurately describe the flow features and microstructure evolution of the hot compressed Ti-55511 at stepped strain rates. |
format |
article |
author |
Gang Su Zhong Yun Yong-Cheng Lin Dao-Guang He Song Zhang Zi-Jian Chen |
author_facet |
Gang Su Zhong Yun Yong-Cheng Lin Dao-Guang He Song Zhang Zi-Jian Chen |
author_sort |
Gang Su |
title |
Microstructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates |
title_short |
Microstructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates |
title_full |
Microstructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates |
title_fullStr |
Microstructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates |
title_full_unstemmed |
Microstructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates |
title_sort |
microstructure evolution and a unified constitutive model of ti-55511 alloy compressed at stepped strain rates |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/07707123a3e643a28536c3cf6fa50dd8 |
work_keys_str_mv |
AT gangsu microstructureevolutionandaunifiedconstitutivemodelofti55511alloycompressedatsteppedstrainrates AT zhongyun microstructureevolutionandaunifiedconstitutivemodelofti55511alloycompressedatsteppedstrainrates AT yongchenglin microstructureevolutionandaunifiedconstitutivemodelofti55511alloycompressedatsteppedstrainrates AT daoguanghe microstructureevolutionandaunifiedconstitutivemodelofti55511alloycompressedatsteppedstrainrates AT songzhang microstructureevolutionandaunifiedconstitutivemodelofti55511alloycompressedatsteppedstrainrates AT zijianchen microstructureevolutionandaunifiedconstitutivemodelofti55511alloycompressedatsteppedstrainrates |
_version_ |
1718411419956805632 |