Kinetics and detectability of the bridgmanite to post-perovskite transformation in the Earth's D″ layer
The D$${}^{{\prime\prime} }$$ ″ layer in the Earth’s lower mantle involves a seismic discontinuity which is often assigned to a mineral phase transition to post-perovskite, however, as this phase transition occurs over broad region the assignment of seismic boundaries remains unclear. Here, the auth...
Saved in:
Main Authors: | Christopher Langrand, Denis Andrault, Stéphanie Durand, Zuzana Konôpková, Nadège Hilairet, Christine Thomas, Sébastien Merkel |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2019
|
Subjects: | |
Online Access: | https://doaj.org/article/078c65dbb8b74458bdeab416a74032d2 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Formation of bridgmanite-enriched layer at the top lower-mantle during magma ocean solidification
by: Longjian Xie, et al.
Published: (2020) -
Experimental evidence supporting a global melt layer at the base of the Earth’s upper mantle
by: D. Freitas, et al.
Published: (2017) -
Low-spin ferric iron in primordial bridgmanite crystallized from a deep magma ocean
by: Yoshiyuki Okuda, et al.
Published: (2021) -
Melting and density of MgSiO3 determined by shock compression of bridgmanite to 1254GPa
by: Yingwei Fei, et al.
Published: (2021) -
Incorporation mechanism of Fe and Al into bridgmanite in a subducting mid-ocean ridge basalt and its crystal chemistry
by: Akihiko Nakatsuka, et al.
Published: (2021)