The effect of acute moderate-intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross-country endurance athletes
Abstract Physical exercise can produce changes in the microbiota, conferring health benefits through mechanisms that are not fully understood. We sought to determine the changes driven by exercise on the gut microbiota and on the serum and fecal metabolome using 16S rRNA gene analysis and untargeted...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/07903f3255e54f57b21e6b9bb9638be4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:07903f3255e54f57b21e6b9bb9638be4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:07903f3255e54f57b21e6b9bb9638be42021-12-02T12:14:56ZThe effect of acute moderate-intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross-country endurance athletes10.1038/s41598-021-82947-12045-2322https://doaj.org/article/07903f3255e54f57b21e6b9bb9638be42021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82947-1https://doaj.org/toc/2045-2322Abstract Physical exercise can produce changes in the microbiota, conferring health benefits through mechanisms that are not fully understood. We sought to determine the changes driven by exercise on the gut microbiota and on the serum and fecal metabolome using 16S rRNA gene analysis and untargeted metabolomics. A total of 85 serum and 12 fecal metabolites and six bacterial taxa (Romboutsia, Escherichia coli TOP498, Ruminococcaceae UCG-005, Blautia, Ruminiclostridium 9 and Clostridium phoceensis) were modified following a controlled acute exercise session. Among the bacterial taxa, Ruminiclostridium 9 was the most influenced by fecal and serum metabolites, as revealed by linear multivariate regression analysis. Exercise significantly increased the fecal ammonia content. Functional analysis revealed that alanine, aspartate and glutamate metabolism and the arginine and aminoacyl-tRNA biosynthesis pathways were the most relevant modified pathways in serum, whereas the phenylalanine, tyrosine and tryptophan biosynthesis pathway was the most relevant pathway modified in feces. Correlation analysis between fecal and serum metabolites suggested an exchange of metabolites between both compartments. Thus, the performance of a single exercise bout in cross-country non-professional athletes produces significant changes in the microbiota and in the serum and fecal metabolome, which may have health implications.Mariangela TaboneCarlo BressaJose Angel García-MerinoDiego Moreno-PérezEmeline Chu VanFlorence A. CastelliFrançois FenailleMar LarrosaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Mariangela Tabone Carlo Bressa Jose Angel García-Merino Diego Moreno-Pérez Emeline Chu Van Florence A. Castelli François Fenaille Mar Larrosa The effect of acute moderate-intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross-country endurance athletes |
description |
Abstract Physical exercise can produce changes in the microbiota, conferring health benefits through mechanisms that are not fully understood. We sought to determine the changes driven by exercise on the gut microbiota and on the serum and fecal metabolome using 16S rRNA gene analysis and untargeted metabolomics. A total of 85 serum and 12 fecal metabolites and six bacterial taxa (Romboutsia, Escherichia coli TOP498, Ruminococcaceae UCG-005, Blautia, Ruminiclostridium 9 and Clostridium phoceensis) were modified following a controlled acute exercise session. Among the bacterial taxa, Ruminiclostridium 9 was the most influenced by fecal and serum metabolites, as revealed by linear multivariate regression analysis. Exercise significantly increased the fecal ammonia content. Functional analysis revealed that alanine, aspartate and glutamate metabolism and the arginine and aminoacyl-tRNA biosynthesis pathways were the most relevant modified pathways in serum, whereas the phenylalanine, tyrosine and tryptophan biosynthesis pathway was the most relevant pathway modified in feces. Correlation analysis between fecal and serum metabolites suggested an exchange of metabolites between both compartments. Thus, the performance of a single exercise bout in cross-country non-professional athletes produces significant changes in the microbiota and in the serum and fecal metabolome, which may have health implications. |
format |
article |
author |
Mariangela Tabone Carlo Bressa Jose Angel García-Merino Diego Moreno-Pérez Emeline Chu Van Florence A. Castelli François Fenaille Mar Larrosa |
author_facet |
Mariangela Tabone Carlo Bressa Jose Angel García-Merino Diego Moreno-Pérez Emeline Chu Van Florence A. Castelli François Fenaille Mar Larrosa |
author_sort |
Mariangela Tabone |
title |
The effect of acute moderate-intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross-country endurance athletes |
title_short |
The effect of acute moderate-intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross-country endurance athletes |
title_full |
The effect of acute moderate-intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross-country endurance athletes |
title_fullStr |
The effect of acute moderate-intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross-country endurance athletes |
title_full_unstemmed |
The effect of acute moderate-intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross-country endurance athletes |
title_sort |
effect of acute moderate-intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross-country endurance athletes |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/07903f3255e54f57b21e6b9bb9638be4 |
work_keys_str_mv |
AT mariangelatabone theeffectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes AT carlobressa theeffectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes AT joseangelgarciamerino theeffectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes AT diegomorenoperez theeffectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes AT emelinechuvan theeffectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes AT florenceacastelli theeffectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes AT francoisfenaille theeffectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes AT marlarrosa theeffectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes AT mariangelatabone effectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes AT carlobressa effectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes AT joseangelgarciamerino effectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes AT diegomorenoperez effectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes AT emelinechuvan effectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes AT florenceacastelli effectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes AT francoisfenaille effectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes AT marlarrosa effectofacutemoderateintensityexerciseontheserumandfecalmetabolomesandthegutmicrobiotaofcrosscountryenduranceathletes |
_version_ |
1718394554275594240 |