Explainable identification and mapping of trees using UAV RGB image and deep learning
Abstract The identification and mapping of trees via remotely sensed data for application in forest management is an active area of research. Previously proposed methods using airborne and hyperspectral sensors can identify tree species with high accuracy but are costly and are thus unsuitable for s...
Guardado en:
Autores principales: | Masanori Onishi, Takeshi Ise |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/07bac437a5ee4be3ad04a36b253be0cd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust seed germination prediction using deep learning and RGB image data
por: Yuval Nehoshtan, et al.
Publicado: (2021) -
An improved approach to estimate above-ground volume and biomass of desert shrub communities based on UAV RGB images
por: Peng Mao, et al.
Publicado: (2021) -
Central Object Segmentation by Deep Learning to Continuously Monitor Fruit Growth through RGB Images
por: Motohisa Fukuda, et al.
Publicado: (2021) -
Multi-Modal Deep Learning for Weeds Detection in Wheat Field Based on RGB-D Images
por: Ke Xu, et al.
Publicado: (2021) -
UAVs in rail damage image diagnostics supported by deep-learning networks
por: Bojarczak Piotr, et al.
Publicado: (2021)