Ensemble Learning Models for Food Safety Risk Prediction
Ensemble learning was adopted to design risk prediction models with the aim of improving border inspection methods for food imported into Taiwan. Specifically, we constructed a set of prediction models to enhance the hit rate of non-conforming products, thus strengthening the border control of food...
Guardado en:
Autores principales: | Li-Ya Wu, Sung-Shun Weng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/07f4a2acf777474da4f65f38a9d1b6b2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Condition-Based Maintenance for Normal Behaviour Characterisation of Railway Car-Body Acceleration Applying Neural Networks
por: Pablo Garrido Martínez-Llop, et al.
Publicado: (2021) -
Machine learning algorithms to assess the thermal behavior of a Moroccan agriculture greenhouse
por: Amine Allouhi, et al.
Publicado: (2021) -
Stacking Model for Optimizing Subjective Well-Being Predictions Based on the CGSS Database
por: Na Ke, et al.
Publicado: (2021) -
Predicting Heritability of Oil Palm Breeding Using Phenotypic Traits and Machine Learning
por: Najihah Ahmad Latif, et al.
Publicado: (2021) -
Sustainable Consumer Behavior and Food Marketing
por: Oliver Meixner, et al.
Publicado: (2021)