Ensemble Learning Models for Food Safety Risk Prediction
Ensemble learning was adopted to design risk prediction models with the aim of improving border inspection methods for food imported into Taiwan. Specifically, we constructed a set of prediction models to enhance the hit rate of non-conforming products, thus strengthening the border control of food...
Enregistré dans:
Auteurs principaux: | Li-Ya Wu, Sung-Shun Weng |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/07f4a2acf777474da4f65f38a9d1b6b2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Condition-Based Maintenance for Normal Behaviour Characterisation of Railway Car-Body Acceleration Applying Neural Networks
par: Pablo Garrido Martínez-Llop, et autres
Publié: (2021) -
Machine learning algorithms to assess the thermal behavior of a Moroccan agriculture greenhouse
par: Amine Allouhi, et autres
Publié: (2021) -
Stacking Model for Optimizing Subjective Well-Being Predictions Based on the CGSS Database
par: Na Ke, et autres
Publié: (2021) -
Predicting Heritability of Oil Palm Breeding Using Phenotypic Traits and Machine Learning
par: Najihah Ahmad Latif, et autres
Publié: (2021) -
Sustainable Consumer Behavior and Food Marketing
par: Oliver Meixner, et autres
Publié: (2021)