Tetra-gel enables superior accuracy in combined super-resolution imaging and expansion microscopy
Abstract The accuracy of expansion microscopy (ExM) depends on the structural preservation of samples embedded in a hydrogel. However, it has been unknown to what extent gel embedding alters the molecular positions of individual labeled sites. Here, we quantified the accuracy of gel embedding by usi...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/07fd9716e4d444bcb23396fa05e84b9c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:07fd9716e4d444bcb23396fa05e84b9c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:07fd9716e4d444bcb23396fa05e84b9c2021-12-02T18:51:46ZTetra-gel enables superior accuracy in combined super-resolution imaging and expansion microscopy10.1038/s41598-021-96258-y2045-2322https://doaj.org/article/07fd9716e4d444bcb23396fa05e84b9c2021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-96258-yhttps://doaj.org/toc/2045-2322Abstract The accuracy of expansion microscopy (ExM) depends on the structural preservation of samples embedded in a hydrogel. However, it has been unknown to what extent gel embedding alters the molecular positions of individual labeled sites. Here, we quantified the accuracy of gel embedding by using stochastic optical reconstruction microscopy (STORM) to image DNA origami with well-defined structures. We found that embedding in hydrogels based on polyacrylamide, the most widely used chemistry in ExM, resulted in random displacements of labeled sites with a standard deviation of ~ 16 nm. In contrast, we found that embedding in tetra-gel, a hydrogel that does not depend on free-radical chain-growth polymerization, preserved labeled sites with a standard deviation of less than 5 nm. By combining tetra-gel ExM with STORM, we were able to resolve 11-nm structural features without the loss in accuracy seen with polyacrylamide gels. Our study thus provides direct measurements of the single-molecule distortions resulting from hydrogel embedding, and presents a way to improve super-resolution microscopy through combination with tetra-gel ExM.Hsuan LeeChih-Chieh YuEdward S. BoydenXiaowei ZhuangPallav KosuriNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-7 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Hsuan Lee Chih-Chieh Yu Edward S. Boyden Xiaowei Zhuang Pallav Kosuri Tetra-gel enables superior accuracy in combined super-resolution imaging and expansion microscopy |
description |
Abstract The accuracy of expansion microscopy (ExM) depends on the structural preservation of samples embedded in a hydrogel. However, it has been unknown to what extent gel embedding alters the molecular positions of individual labeled sites. Here, we quantified the accuracy of gel embedding by using stochastic optical reconstruction microscopy (STORM) to image DNA origami with well-defined structures. We found that embedding in hydrogels based on polyacrylamide, the most widely used chemistry in ExM, resulted in random displacements of labeled sites with a standard deviation of ~ 16 nm. In contrast, we found that embedding in tetra-gel, a hydrogel that does not depend on free-radical chain-growth polymerization, preserved labeled sites with a standard deviation of less than 5 nm. By combining tetra-gel ExM with STORM, we were able to resolve 11-nm structural features without the loss in accuracy seen with polyacrylamide gels. Our study thus provides direct measurements of the single-molecule distortions resulting from hydrogel embedding, and presents a way to improve super-resolution microscopy through combination with tetra-gel ExM. |
format |
article |
author |
Hsuan Lee Chih-Chieh Yu Edward S. Boyden Xiaowei Zhuang Pallav Kosuri |
author_facet |
Hsuan Lee Chih-Chieh Yu Edward S. Boyden Xiaowei Zhuang Pallav Kosuri |
author_sort |
Hsuan Lee |
title |
Tetra-gel enables superior accuracy in combined super-resolution imaging and expansion microscopy |
title_short |
Tetra-gel enables superior accuracy in combined super-resolution imaging and expansion microscopy |
title_full |
Tetra-gel enables superior accuracy in combined super-resolution imaging and expansion microscopy |
title_fullStr |
Tetra-gel enables superior accuracy in combined super-resolution imaging and expansion microscopy |
title_full_unstemmed |
Tetra-gel enables superior accuracy in combined super-resolution imaging and expansion microscopy |
title_sort |
tetra-gel enables superior accuracy in combined super-resolution imaging and expansion microscopy |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/07fd9716e4d444bcb23396fa05e84b9c |
work_keys_str_mv |
AT hsuanlee tetragelenablessuperioraccuracyincombinedsuperresolutionimagingandexpansionmicroscopy AT chihchiehyu tetragelenablessuperioraccuracyincombinedsuperresolutionimagingandexpansionmicroscopy AT edwardsboyden tetragelenablessuperioraccuracyincombinedsuperresolutionimagingandexpansionmicroscopy AT xiaoweizhuang tetragelenablessuperioraccuracyincombinedsuperresolutionimagingandexpansionmicroscopy AT pallavkosuri tetragelenablessuperioraccuracyincombinedsuperresolutionimagingandexpansionmicroscopy |
_version_ |
1718377368277483520 |