Assisting scalable diagnosis automatically via CT images in the combat against COVID-19
Abstract The pandemic of Coronavirus Disease 2019 (COVID-19) is causing enormous loss of life globally. Prompt case identification is critical. The reference method is the real-time reverse transcription PCR (RT-PCR) assay, whose limitations may curb its prompt large-scale application. COVID-19 mani...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0809c4d7677844d1b2bbdca646352a4e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0809c4d7677844d1b2bbdca646352a4e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0809c4d7677844d1b2bbdca646352a4e2021-12-02T14:21:58ZAssisting scalable diagnosis automatically via CT images in the combat against COVID-1910.1038/s41598-021-83424-52045-2322https://doaj.org/article/0809c4d7677844d1b2bbdca646352a4e2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83424-5https://doaj.org/toc/2045-2322Abstract The pandemic of Coronavirus Disease 2019 (COVID-19) is causing enormous loss of life globally. Prompt case identification is critical. The reference method is the real-time reverse transcription PCR (RT-PCR) assay, whose limitations may curb its prompt large-scale application. COVID-19 manifests with chest computed tomography (CT) abnormalities, some even before the onset of symptoms. We tested the hypothesis that the application of deep learning (DL) to 3D CT images could help identify COVID-19 infections. Using data from 920 COVID-19 and 1,073 non-COVID-19 pneumonia patients, we developed a modified DenseNet-264 model, COVIDNet, to classify CT images to either class. When tested on an independent set of 233 COVID-19 and 289 non-COVID-19 pneumonia patients, COVIDNet achieved an accuracy rate of 94.3% and an area under the curve of 0.98. As of March 23, 2020, the COVIDNet system had been used 11,966 times with a sensitivity of 91.12% and a specificity of 88.50% in six hospitals with PCR confirmation. Application of DL to CT images may improve both efficiency and capacity of case detection and long-term surveillance.Bohan LiuPan LiuLutao DaiYanlin YangPeng XieYiqing TanJicheng DuWei ShanChenghui ZhaoQin ZhongXixiang LinXizhou GuanNing XingYuhui SunWenjun WangZhibing ZhangXia FuYanqing FanMeifang LiNa ZhangLin LiYaou LiuLin XuJingbo DuZhenhua ZhaoXuelong HuWeipeng FanRongpin WangChongchong WuYongkang NieLiuquan ChengLin MaZongren LiQian JiaMinchao LiuHuayuan GuoGao HuangHaipeng ShenLiang ZhangPeifang ZhangGang GuoHao LiWeimin AnJianxin ZhouKunlun HeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Bohan Liu Pan Liu Lutao Dai Yanlin Yang Peng Xie Yiqing Tan Jicheng Du Wei Shan Chenghui Zhao Qin Zhong Xixiang Lin Xizhou Guan Ning Xing Yuhui Sun Wenjun Wang Zhibing Zhang Xia Fu Yanqing Fan Meifang Li Na Zhang Lin Li Yaou Liu Lin Xu Jingbo Du Zhenhua Zhao Xuelong Hu Weipeng Fan Rongpin Wang Chongchong Wu Yongkang Nie Liuquan Cheng Lin Ma Zongren Li Qian Jia Minchao Liu Huayuan Guo Gao Huang Haipeng Shen Liang Zhang Peifang Zhang Gang Guo Hao Li Weimin An Jianxin Zhou Kunlun He Assisting scalable diagnosis automatically via CT images in the combat against COVID-19 |
description |
Abstract The pandemic of Coronavirus Disease 2019 (COVID-19) is causing enormous loss of life globally. Prompt case identification is critical. The reference method is the real-time reverse transcription PCR (RT-PCR) assay, whose limitations may curb its prompt large-scale application. COVID-19 manifests with chest computed tomography (CT) abnormalities, some even before the onset of symptoms. We tested the hypothesis that the application of deep learning (DL) to 3D CT images could help identify COVID-19 infections. Using data from 920 COVID-19 and 1,073 non-COVID-19 pneumonia patients, we developed a modified DenseNet-264 model, COVIDNet, to classify CT images to either class. When tested on an independent set of 233 COVID-19 and 289 non-COVID-19 pneumonia patients, COVIDNet achieved an accuracy rate of 94.3% and an area under the curve of 0.98. As of March 23, 2020, the COVIDNet system had been used 11,966 times with a sensitivity of 91.12% and a specificity of 88.50% in six hospitals with PCR confirmation. Application of DL to CT images may improve both efficiency and capacity of case detection and long-term surveillance. |
format |
article |
author |
Bohan Liu Pan Liu Lutao Dai Yanlin Yang Peng Xie Yiqing Tan Jicheng Du Wei Shan Chenghui Zhao Qin Zhong Xixiang Lin Xizhou Guan Ning Xing Yuhui Sun Wenjun Wang Zhibing Zhang Xia Fu Yanqing Fan Meifang Li Na Zhang Lin Li Yaou Liu Lin Xu Jingbo Du Zhenhua Zhao Xuelong Hu Weipeng Fan Rongpin Wang Chongchong Wu Yongkang Nie Liuquan Cheng Lin Ma Zongren Li Qian Jia Minchao Liu Huayuan Guo Gao Huang Haipeng Shen Liang Zhang Peifang Zhang Gang Guo Hao Li Weimin An Jianxin Zhou Kunlun He |
author_facet |
Bohan Liu Pan Liu Lutao Dai Yanlin Yang Peng Xie Yiqing Tan Jicheng Du Wei Shan Chenghui Zhao Qin Zhong Xixiang Lin Xizhou Guan Ning Xing Yuhui Sun Wenjun Wang Zhibing Zhang Xia Fu Yanqing Fan Meifang Li Na Zhang Lin Li Yaou Liu Lin Xu Jingbo Du Zhenhua Zhao Xuelong Hu Weipeng Fan Rongpin Wang Chongchong Wu Yongkang Nie Liuquan Cheng Lin Ma Zongren Li Qian Jia Minchao Liu Huayuan Guo Gao Huang Haipeng Shen Liang Zhang Peifang Zhang Gang Guo Hao Li Weimin An Jianxin Zhou Kunlun He |
author_sort |
Bohan Liu |
title |
Assisting scalable diagnosis automatically via CT images in the combat against COVID-19 |
title_short |
Assisting scalable diagnosis automatically via CT images in the combat against COVID-19 |
title_full |
Assisting scalable diagnosis automatically via CT images in the combat against COVID-19 |
title_fullStr |
Assisting scalable diagnosis automatically via CT images in the combat against COVID-19 |
title_full_unstemmed |
Assisting scalable diagnosis automatically via CT images in the combat against COVID-19 |
title_sort |
assisting scalable diagnosis automatically via ct images in the combat against covid-19 |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/0809c4d7677844d1b2bbdca646352a4e |
work_keys_str_mv |
AT bohanliu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT panliu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT lutaodai assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT yanlinyang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT pengxie assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT yiqingtan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT jichengdu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT weishan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT chenghuizhao assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT qinzhong assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT xixianglin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT xizhouguan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT ningxing assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT yuhuisun assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT wenjunwang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT zhibingzhang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT xiafu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT yanqingfan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT meifangli assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT nazhang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT linli assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT yaouliu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT linxu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT jingbodu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT zhenhuazhao assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT xuelonghu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT weipengfan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT rongpinwang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT chongchongwu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT yongkangnie assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT liuquancheng assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT linma assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT zongrenli assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT qianjia assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT minchaoliu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT huayuanguo assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT gaohuang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT haipengshen assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT liangzhang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT peifangzhang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT gangguo assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT haoli assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT weiminan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT jianxinzhou assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT kunlunhe assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 |
_version_ |
1718391467891752960 |