Assisting scalable diagnosis automatically via CT images in the combat against COVID-19

Abstract The pandemic of Coronavirus Disease 2019 (COVID-19) is causing enormous loss of life globally. Prompt case identification is critical. The reference method is the real-time reverse transcription PCR (RT-PCR) assay, whose limitations may curb its prompt large-scale application. COVID-19 mani...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bohan Liu, Pan Liu, Lutao Dai, Yanlin Yang, Peng Xie, Yiqing Tan, Jicheng Du, Wei Shan, Chenghui Zhao, Qin Zhong, Xixiang Lin, Xizhou Guan, Ning Xing, Yuhui Sun, Wenjun Wang, Zhibing Zhang, Xia Fu, Yanqing Fan, Meifang Li, Na Zhang, Lin Li, Yaou Liu, Lin Xu, Jingbo Du, Zhenhua Zhao, Xuelong Hu, Weipeng Fan, Rongpin Wang, Chongchong Wu, Yongkang Nie, Liuquan Cheng, Lin Ma, Zongren Li, Qian Jia, Minchao Liu, Huayuan Guo, Gao Huang, Haipeng Shen, Liang Zhang, Peifang Zhang, Gang Guo, Hao Li, Weimin An, Jianxin Zhou, Kunlun He
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0809c4d7677844d1b2bbdca646352a4e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0809c4d7677844d1b2bbdca646352a4e
record_format dspace
spelling oai:doaj.org-article:0809c4d7677844d1b2bbdca646352a4e2021-12-02T14:21:58ZAssisting scalable diagnosis automatically via CT images in the combat against COVID-1910.1038/s41598-021-83424-52045-2322https://doaj.org/article/0809c4d7677844d1b2bbdca646352a4e2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83424-5https://doaj.org/toc/2045-2322Abstract The pandemic of Coronavirus Disease 2019 (COVID-19) is causing enormous loss of life globally. Prompt case identification is critical. The reference method is the real-time reverse transcription PCR (RT-PCR) assay, whose limitations may curb its prompt large-scale application. COVID-19 manifests with chest computed tomography (CT) abnormalities, some even before the onset of symptoms. We tested the hypothesis that the application of deep learning (DL) to 3D CT images could help identify COVID-19 infections. Using data from 920 COVID-19 and 1,073 non-COVID-19 pneumonia patients, we developed a modified DenseNet-264 model, COVIDNet, to classify CT images to either class. When tested on an independent set of 233 COVID-19 and 289 non-COVID-19 pneumonia patients, COVIDNet achieved an accuracy rate of 94.3% and an area under the curve of 0.98. As of March 23, 2020, the COVIDNet system had been used 11,966 times with a sensitivity of 91.12% and a specificity of 88.50% in six hospitals with PCR confirmation. Application of DL to CT images may improve both efficiency and capacity of case detection and long-term surveillance.Bohan LiuPan LiuLutao DaiYanlin YangPeng XieYiqing TanJicheng DuWei ShanChenghui ZhaoQin ZhongXixiang LinXizhou GuanNing XingYuhui SunWenjun WangZhibing ZhangXia FuYanqing FanMeifang LiNa ZhangLin LiYaou LiuLin XuJingbo DuZhenhua ZhaoXuelong HuWeipeng FanRongpin WangChongchong WuYongkang NieLiuquan ChengLin MaZongren LiQian JiaMinchao LiuHuayuan GuoGao HuangHaipeng ShenLiang ZhangPeifang ZhangGang GuoHao LiWeimin AnJianxin ZhouKunlun HeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Bohan Liu
Pan Liu
Lutao Dai
Yanlin Yang
Peng Xie
Yiqing Tan
Jicheng Du
Wei Shan
Chenghui Zhao
Qin Zhong
Xixiang Lin
Xizhou Guan
Ning Xing
Yuhui Sun
Wenjun Wang
Zhibing Zhang
Xia Fu
Yanqing Fan
Meifang Li
Na Zhang
Lin Li
Yaou Liu
Lin Xu
Jingbo Du
Zhenhua Zhao
Xuelong Hu
Weipeng Fan
Rongpin Wang
Chongchong Wu
Yongkang Nie
Liuquan Cheng
Lin Ma
Zongren Li
Qian Jia
Minchao Liu
Huayuan Guo
Gao Huang
Haipeng Shen
Liang Zhang
Peifang Zhang
Gang Guo
Hao Li
Weimin An
Jianxin Zhou
Kunlun He
Assisting scalable diagnosis automatically via CT images in the combat against COVID-19
description Abstract The pandemic of Coronavirus Disease 2019 (COVID-19) is causing enormous loss of life globally. Prompt case identification is critical. The reference method is the real-time reverse transcription PCR (RT-PCR) assay, whose limitations may curb its prompt large-scale application. COVID-19 manifests with chest computed tomography (CT) abnormalities, some even before the onset of symptoms. We tested the hypothesis that the application of deep learning (DL) to 3D CT images could help identify COVID-19 infections. Using data from 920 COVID-19 and 1,073 non-COVID-19 pneumonia patients, we developed a modified DenseNet-264 model, COVIDNet, to classify CT images to either class. When tested on an independent set of 233 COVID-19 and 289 non-COVID-19 pneumonia patients, COVIDNet achieved an accuracy rate of 94.3% and an area under the curve of 0.98. As of March 23, 2020, the COVIDNet system had been used 11,966 times with a sensitivity of 91.12% and a specificity of 88.50% in six hospitals with PCR confirmation. Application of DL to CT images may improve both efficiency and capacity of case detection and long-term surveillance.
format article
author Bohan Liu
Pan Liu
Lutao Dai
Yanlin Yang
Peng Xie
Yiqing Tan
Jicheng Du
Wei Shan
Chenghui Zhao
Qin Zhong
Xixiang Lin
Xizhou Guan
Ning Xing
Yuhui Sun
Wenjun Wang
Zhibing Zhang
Xia Fu
Yanqing Fan
Meifang Li
Na Zhang
Lin Li
Yaou Liu
Lin Xu
Jingbo Du
Zhenhua Zhao
Xuelong Hu
Weipeng Fan
Rongpin Wang
Chongchong Wu
Yongkang Nie
Liuquan Cheng
Lin Ma
Zongren Li
Qian Jia
Minchao Liu
Huayuan Guo
Gao Huang
Haipeng Shen
Liang Zhang
Peifang Zhang
Gang Guo
Hao Li
Weimin An
Jianxin Zhou
Kunlun He
author_facet Bohan Liu
Pan Liu
Lutao Dai
Yanlin Yang
Peng Xie
Yiqing Tan
Jicheng Du
Wei Shan
Chenghui Zhao
Qin Zhong
Xixiang Lin
Xizhou Guan
Ning Xing
Yuhui Sun
Wenjun Wang
Zhibing Zhang
Xia Fu
Yanqing Fan
Meifang Li
Na Zhang
Lin Li
Yaou Liu
Lin Xu
Jingbo Du
Zhenhua Zhao
Xuelong Hu
Weipeng Fan
Rongpin Wang
Chongchong Wu
Yongkang Nie
Liuquan Cheng
Lin Ma
Zongren Li
Qian Jia
Minchao Liu
Huayuan Guo
Gao Huang
Haipeng Shen
Liang Zhang
Peifang Zhang
Gang Guo
Hao Li
Weimin An
Jianxin Zhou
Kunlun He
author_sort Bohan Liu
title Assisting scalable diagnosis automatically via CT images in the combat against COVID-19
title_short Assisting scalable diagnosis automatically via CT images in the combat against COVID-19
title_full Assisting scalable diagnosis automatically via CT images in the combat against COVID-19
title_fullStr Assisting scalable diagnosis automatically via CT images in the combat against COVID-19
title_full_unstemmed Assisting scalable diagnosis automatically via CT images in the combat against COVID-19
title_sort assisting scalable diagnosis automatically via ct images in the combat against covid-19
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0809c4d7677844d1b2bbdca646352a4e
work_keys_str_mv AT bohanliu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT panliu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT lutaodai assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT yanlinyang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT pengxie assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT yiqingtan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT jichengdu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT weishan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT chenghuizhao assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT qinzhong assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT xixianglin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT xizhouguan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT ningxing assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT yuhuisun assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT wenjunwang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT zhibingzhang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT xiafu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT yanqingfan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT meifangli assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT nazhang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT linli assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT yaouliu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT linxu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT jingbodu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT zhenhuazhao assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT xuelonghu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT weipengfan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT rongpinwang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT chongchongwu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT yongkangnie assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT liuquancheng assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT linma assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT zongrenli assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT qianjia assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT minchaoliu assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT huayuanguo assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT gaohuang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT haipengshen assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT liangzhang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT peifangzhang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT gangguo assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT haoli assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT weiminan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT jianxinzhou assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT kunlunhe assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
_version_ 1718391467891752960