EpiScanpy: integrated single-cell epigenomic analysis

The authors present epiScanpy: a computational framework for the analysis of single-cell epigenomic data, both ATAC-seq and DNA methylation data, with examples for clustering, cell type identification, trajectory learning and atlas integration - and show its performance in distinguishing cell types.

Guardado en:
Detalles Bibliográficos
Autores principales: Anna Danese, Maria L. Richter, Kridsadakorn Chaichoompu, David S. Fischer, Fabian J. Theis, Maria Colomé-Tatché
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/080e8714432f46029536734062f84ff2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:080e8714432f46029536734062f84ff2
record_format dspace
spelling oai:doaj.org-article:080e8714432f46029536734062f84ff22021-12-02T15:25:36ZEpiScanpy: integrated single-cell epigenomic analysis10.1038/s41467-021-25131-32041-1723https://doaj.org/article/080e8714432f46029536734062f84ff22021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25131-3https://doaj.org/toc/2041-1723The authors present epiScanpy: a computational framework for the analysis of single-cell epigenomic data, both ATAC-seq and DNA methylation data, with examples for clustering, cell type identification, trajectory learning and atlas integration - and show its performance in distinguishing cell types.Anna DaneseMaria L. RichterKridsadakorn ChaichoompuDavid S. FischerFabian J. TheisMaria Colomé-TatchéNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Anna Danese
Maria L. Richter
Kridsadakorn Chaichoompu
David S. Fischer
Fabian J. Theis
Maria Colomé-Tatché
EpiScanpy: integrated single-cell epigenomic analysis
description The authors present epiScanpy: a computational framework for the analysis of single-cell epigenomic data, both ATAC-seq and DNA methylation data, with examples for clustering, cell type identification, trajectory learning and atlas integration - and show its performance in distinguishing cell types.
format article
author Anna Danese
Maria L. Richter
Kridsadakorn Chaichoompu
David S. Fischer
Fabian J. Theis
Maria Colomé-Tatché
author_facet Anna Danese
Maria L. Richter
Kridsadakorn Chaichoompu
David S. Fischer
Fabian J. Theis
Maria Colomé-Tatché
author_sort Anna Danese
title EpiScanpy: integrated single-cell epigenomic analysis
title_short EpiScanpy: integrated single-cell epigenomic analysis
title_full EpiScanpy: integrated single-cell epigenomic analysis
title_fullStr EpiScanpy: integrated single-cell epigenomic analysis
title_full_unstemmed EpiScanpy: integrated single-cell epigenomic analysis
title_sort episcanpy: integrated single-cell epigenomic analysis
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/080e8714432f46029536734062f84ff2
work_keys_str_mv AT annadanese episcanpyintegratedsinglecellepigenomicanalysis
AT marialrichter episcanpyintegratedsinglecellepigenomicanalysis
AT kridsadakornchaichoompu episcanpyintegratedsinglecellepigenomicanalysis
AT davidsfischer episcanpyintegratedsinglecellepigenomicanalysis
AT fabianjtheis episcanpyintegratedsinglecellepigenomicanalysis
AT mariacolometatche episcanpyintegratedsinglecellepigenomicanalysis
_version_ 1718387244508643328