EpiScanpy: integrated single-cell epigenomic analysis
The authors present epiScanpy: a computational framework for the analysis of single-cell epigenomic data, both ATAC-seq and DNA methylation data, with examples for clustering, cell type identification, trajectory learning and atlas integration - and show its performance in distinguishing cell types.
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/080e8714432f46029536734062f84ff2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:080e8714432f46029536734062f84ff2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:080e8714432f46029536734062f84ff22021-12-02T15:25:36ZEpiScanpy: integrated single-cell epigenomic analysis10.1038/s41467-021-25131-32041-1723https://doaj.org/article/080e8714432f46029536734062f84ff22021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25131-3https://doaj.org/toc/2041-1723The authors present epiScanpy: a computational framework for the analysis of single-cell epigenomic data, both ATAC-seq and DNA methylation data, with examples for clustering, cell type identification, trajectory learning and atlas integration - and show its performance in distinguishing cell types.Anna DaneseMaria L. RichterKridsadakorn ChaichoompuDavid S. FischerFabian J. TheisMaria Colomé-TatchéNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Anna Danese Maria L. Richter Kridsadakorn Chaichoompu David S. Fischer Fabian J. Theis Maria Colomé-Tatché EpiScanpy: integrated single-cell epigenomic analysis |
description |
The authors present epiScanpy: a computational framework for the analysis of single-cell epigenomic data, both ATAC-seq and DNA methylation data, with examples for clustering, cell type identification, trajectory learning and atlas integration - and show its performance in distinguishing cell types. |
format |
article |
author |
Anna Danese Maria L. Richter Kridsadakorn Chaichoompu David S. Fischer Fabian J. Theis Maria Colomé-Tatché |
author_facet |
Anna Danese Maria L. Richter Kridsadakorn Chaichoompu David S. Fischer Fabian J. Theis Maria Colomé-Tatché |
author_sort |
Anna Danese |
title |
EpiScanpy: integrated single-cell epigenomic analysis |
title_short |
EpiScanpy: integrated single-cell epigenomic analysis |
title_full |
EpiScanpy: integrated single-cell epigenomic analysis |
title_fullStr |
EpiScanpy: integrated single-cell epigenomic analysis |
title_full_unstemmed |
EpiScanpy: integrated single-cell epigenomic analysis |
title_sort |
episcanpy: integrated single-cell epigenomic analysis |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/080e8714432f46029536734062f84ff2 |
work_keys_str_mv |
AT annadanese episcanpyintegratedsinglecellepigenomicanalysis AT marialrichter episcanpyintegratedsinglecellepigenomicanalysis AT kridsadakornchaichoompu episcanpyintegratedsinglecellepigenomicanalysis AT davidsfischer episcanpyintegratedsinglecellepigenomicanalysis AT fabianjtheis episcanpyintegratedsinglecellepigenomicanalysis AT mariacolometatche episcanpyintegratedsinglecellepigenomicanalysis |
_version_ |
1718387244508643328 |