A tale of two "forests": random forest machine learning AIDS tropical forest carbon mapping.
Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus). The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Ran...
Guardado en:
Autores principales: | Joseph Mascaro, Gregory P Asner, David E Knapp, Ty Kennedy-Bowdoin, Roberta E Martin, Christopher Anderson, Mark Higgins, K Dana Chadwick |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/08103648c6a04a1eac14471b6a484809 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mapping forest age and characterizing vegetation structure and species composition in tropical dry forests
por: G. Reyes-Palomeque, et al.
Publicado: (2021) -
Mapping Amazon Forest Productivity by Fusing GEDI Lidar Waveforms with an Individual-Based Forest Model
por: Luise Bauer, et al.
Publicado: (2021) -
Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.
por: Rebecca Ostertag, et al.
Publicado: (2014) -
Journal of tropical forest science
Publicado: (1988) -
Forest edge disturbance increases rattan abundance in tropical rain forest fragments
por: Mason J. Campbell, et al.
Publicado: (2017)