Sine Entropy of Uncertain Random Variables

Entropy is usually used to measure the uncertainty of uncertain random variables. It has been defined by logarithmic entropy with chance theory. However, this logarithmic entropy sometimes fails to measure the uncertainty of some uncertain random variables. In order to solve this problem, this paper...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gang Shi, Rujun Zhuang, Yuhong Sheng
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/081440a155ea4922b6ddab19034cc63f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:081440a155ea4922b6ddab19034cc63f
record_format dspace
spelling oai:doaj.org-article:081440a155ea4922b6ddab19034cc63f2021-11-25T19:06:07ZSine Entropy of Uncertain Random Variables10.3390/sym131120232073-8994https://doaj.org/article/081440a155ea4922b6ddab19034cc63f2021-10-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2023https://doaj.org/toc/2073-8994Entropy is usually used to measure the uncertainty of uncertain random variables. It has been defined by logarithmic entropy with chance theory. However, this logarithmic entropy sometimes fails to measure the uncertainty of some uncertain random variables. In order to solve this problem, this paper proposes two types of entropy for uncertain random variables: sine entropy and partial sine entropy, and studies some of their properties. Some important properties of sine entropy and partial sine entropy, such as translation invariance and positive linearity, are obtained. In addition, the calculation formulas of sine entropy and partial sine entropy of uncertain random variables are given.Gang ShiRujun ZhuangYuhong ShengMDPI AGarticlechance theoryuncertain random variablesine entropypartial sine entropyMathematicsQA1-939ENSymmetry, Vol 13, Iss 2023, p 2023 (2021)
institution DOAJ
collection DOAJ
language EN
topic chance theory
uncertain random variable
sine entropy
partial sine entropy
Mathematics
QA1-939
spellingShingle chance theory
uncertain random variable
sine entropy
partial sine entropy
Mathematics
QA1-939
Gang Shi
Rujun Zhuang
Yuhong Sheng
Sine Entropy of Uncertain Random Variables
description Entropy is usually used to measure the uncertainty of uncertain random variables. It has been defined by logarithmic entropy with chance theory. However, this logarithmic entropy sometimes fails to measure the uncertainty of some uncertain random variables. In order to solve this problem, this paper proposes two types of entropy for uncertain random variables: sine entropy and partial sine entropy, and studies some of their properties. Some important properties of sine entropy and partial sine entropy, such as translation invariance and positive linearity, are obtained. In addition, the calculation formulas of sine entropy and partial sine entropy of uncertain random variables are given.
format article
author Gang Shi
Rujun Zhuang
Yuhong Sheng
author_facet Gang Shi
Rujun Zhuang
Yuhong Sheng
author_sort Gang Shi
title Sine Entropy of Uncertain Random Variables
title_short Sine Entropy of Uncertain Random Variables
title_full Sine Entropy of Uncertain Random Variables
title_fullStr Sine Entropy of Uncertain Random Variables
title_full_unstemmed Sine Entropy of Uncertain Random Variables
title_sort sine entropy of uncertain random variables
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/081440a155ea4922b6ddab19034cc63f
work_keys_str_mv AT gangshi sineentropyofuncertainrandomvariables
AT rujunzhuang sineentropyofuncertainrandomvariables
AT yuhongsheng sineentropyofuncertainrandomvariables
_version_ 1718410257716215808