DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine

Abstract Recent global developments underscore the prominent role big data have in modern medical science. But privacy issues constitute a prevalent problem for collecting and sharing data between researchers. However, synthetic data generated to represent real data carrying similar information and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vajira Thambawita, Jonas L. Isaksen, Steven A. Hicks, Jonas Ghouse, Gustav Ahlberg, Allan Linneberg, Niels Grarup, Christina Ellervik, Morten Salling Olesen, Torben Hansen, Claus Graff, Niels-Henrik Holstein-Rathlou, Inga Strümke, Hugo L. Hammer, Mary M. Maleckar, Pål Halvorsen, Michael A. Riegler, Jørgen K. Kanters
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/083a56ecd10843639b0fa258ef14862d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:083a56ecd10843639b0fa258ef14862d
record_format dspace
spelling oai:doaj.org-article:083a56ecd10843639b0fa258ef14862d2021-11-14T12:21:22ZDeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine10.1038/s41598-021-01295-22045-2322https://doaj.org/article/083a56ecd10843639b0fa258ef14862d2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-01295-2https://doaj.org/toc/2045-2322Abstract Recent global developments underscore the prominent role big data have in modern medical science. But privacy issues constitute a prevalent problem for collecting and sharing data between researchers. However, synthetic data generated to represent real data carrying similar information and distribution may alleviate the privacy issue. In this study, we present generative adversarial networks (GANs) capable of generating realistic synthetic DeepFake 10-s 12-lead electrocardiograms (ECGs). We have developed and compared two methods, named WaveGAN* and Pulse2Pulse. We trained the GANs with 7,233 real normal ECGs to produce 121,977 DeepFake normal ECGs. By verifying the ECGs using a commercial ECG interpretation program (MUSE 12SL, GE Healthcare), we demonstrate that the Pulse2Pulse GAN was superior to the WaveGAN* to produce realistic ECGs. ECG intervals and amplitudes were similar between the DeepFake and real ECGs. Although these synthetic ECGs mimic the dataset used for creation, the ECGs are not linked to any individuals and may thus be used freely. The synthetic dataset will be available as open access for researchers at OSF.io and the DeepFake generator available at the Python Package Index (PyPI) for generating synthetic ECGs. In conclusion, we were able to generate realistic synthetic ECGs using generative adversarial neural networks on normal ECGs from two population studies, thereby addressing the relevant privacy issues in medical datasets.Vajira ThambawitaJonas L. IsaksenSteven A. HicksJonas GhouseGustav AhlbergAllan LinnebergNiels GrarupChristina EllervikMorten Salling OlesenTorben HansenClaus GraffNiels-Henrik Holstein-RathlouInga StrümkeHugo L. HammerMary M. MaleckarPål HalvorsenMichael A. RieglerJørgen K. KantersNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Vajira Thambawita
Jonas L. Isaksen
Steven A. Hicks
Jonas Ghouse
Gustav Ahlberg
Allan Linneberg
Niels Grarup
Christina Ellervik
Morten Salling Olesen
Torben Hansen
Claus Graff
Niels-Henrik Holstein-Rathlou
Inga Strümke
Hugo L. Hammer
Mary M. Maleckar
Pål Halvorsen
Michael A. Riegler
Jørgen K. Kanters
DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine
description Abstract Recent global developments underscore the prominent role big data have in modern medical science. But privacy issues constitute a prevalent problem for collecting and sharing data between researchers. However, synthetic data generated to represent real data carrying similar information and distribution may alleviate the privacy issue. In this study, we present generative adversarial networks (GANs) capable of generating realistic synthetic DeepFake 10-s 12-lead electrocardiograms (ECGs). We have developed and compared two methods, named WaveGAN* and Pulse2Pulse. We trained the GANs with 7,233 real normal ECGs to produce 121,977 DeepFake normal ECGs. By verifying the ECGs using a commercial ECG interpretation program (MUSE 12SL, GE Healthcare), we demonstrate that the Pulse2Pulse GAN was superior to the WaveGAN* to produce realistic ECGs. ECG intervals and amplitudes were similar between the DeepFake and real ECGs. Although these synthetic ECGs mimic the dataset used for creation, the ECGs are not linked to any individuals and may thus be used freely. The synthetic dataset will be available as open access for researchers at OSF.io and the DeepFake generator available at the Python Package Index (PyPI) for generating synthetic ECGs. In conclusion, we were able to generate realistic synthetic ECGs using generative adversarial neural networks on normal ECGs from two population studies, thereby addressing the relevant privacy issues in medical datasets.
format article
author Vajira Thambawita
Jonas L. Isaksen
Steven A. Hicks
Jonas Ghouse
Gustav Ahlberg
Allan Linneberg
Niels Grarup
Christina Ellervik
Morten Salling Olesen
Torben Hansen
Claus Graff
Niels-Henrik Holstein-Rathlou
Inga Strümke
Hugo L. Hammer
Mary M. Maleckar
Pål Halvorsen
Michael A. Riegler
Jørgen K. Kanters
author_facet Vajira Thambawita
Jonas L. Isaksen
Steven A. Hicks
Jonas Ghouse
Gustav Ahlberg
Allan Linneberg
Niels Grarup
Christina Ellervik
Morten Salling Olesen
Torben Hansen
Claus Graff
Niels-Henrik Holstein-Rathlou
Inga Strümke
Hugo L. Hammer
Mary M. Maleckar
Pål Halvorsen
Michael A. Riegler
Jørgen K. Kanters
author_sort Vajira Thambawita
title DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine
title_short DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine
title_full DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine
title_fullStr DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine
title_full_unstemmed DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine
title_sort deepfake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/083a56ecd10843639b0fa258ef14862d
work_keys_str_mv AT vajirathambawita deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT jonaslisaksen deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT stevenahicks deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT jonasghouse deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT gustavahlberg deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT allanlinneberg deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT nielsgrarup deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT christinaellervik deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT mortensallingolesen deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT torbenhansen deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT clausgraff deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT nielshenrikholsteinrathlou deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT ingastrumke deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT hugolhammer deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT marymmaleckar deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT palhalvorsen deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT michaelariegler deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
AT jørgenkkanters deepfakeelectrocardiogramsusinggenerativeadversarialnetworksarethebeginningoftheendforprivacyissuesinmedicine
_version_ 1718429209950420992