DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine
Abstract Recent global developments underscore the prominent role big data have in modern medical science. But privacy issues constitute a prevalent problem for collecting and sharing data between researchers. However, synthetic data generated to represent real data carrying similar information and...
Guardado en:
Autores principales: | Vajira Thambawita, Jonas L. Isaksen, Steven A. Hicks, Jonas Ghouse, Gustav Ahlberg, Allan Linneberg, Niels Grarup, Christina Ellervik, Morten Salling Olesen, Torben Hansen, Claus Graff, Niels-Henrik Holstein-Rathlou, Inga Strümke, Hugo L. Hammer, Mary M. Maleckar, Pål Halvorsen, Michael A. Riegler, Jørgen K. Kanters |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/083a56ecd10843639b0fa258ef14862d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
por: Steven A. Hicks, et al.
Publicado: (2021) -
TweepFake: About detecting deepfake tweets.
por: Tiziano Fagni, et al.
Publicado: (2021) -
Deepfakes in Ophthalmology
por: Jimmy S. Chen, MD, et al.
Publicado: (2021) -
The Forgery of Deepfake and the “Advent” of Artificial Intelligence
por: Edmondo Grassi
Publicado: (2021) -
Deepfake-Image Anti-Forensics with Adversarial Examples Attacks
por: Li Fan, et al.
Publicado: (2021)