Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer

Abstract The beneficial use of a hole transport layer (HTL) as a substitution for poly(3,4-ethlyenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is regarded as one of the most important approaches for improving the stability and efficiency of inverted perovskite solar cells. Here, we demonstrat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jae Choul Yu, Ji A Hong, Eui Dae Jung, Da Bin Kim, Soo-Min Baek, Sukbin Lee, Shinuk Cho, Sung Soo Park, Kyoung Jin Choi, Myoung Hoon Song
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/084069d0e26e4cff8aa66e3c1b426667
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The beneficial use of a hole transport layer (HTL) as a substitution for poly(3,4-ethlyenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is regarded as one of the most important approaches for improving the stability and efficiency of inverted perovskite solar cells. Here, we demonstrate highly efficient and stable inverted perovskite solar cells by applying a GO-doped PEDOT:PSS (PEDOT:GO) film as an HTL. The high performance of this solar cell stems from the excellent optical and electrical properties of the PEDOT:GO film, including a higher electrical conductivity, a higher work function related to the reduced contact barrier between the perovskite layer and the PEDOT:GO layer, enhanced crystallinity of the perovskite crystal, and suppressed leakage current. Moreover, the device with the PEDOT:GO layer showed excellent long-term stability in ambient air conditions. Thus, the enhancement in the efficiency and the excellent stability of inverted perovskite solar cells are promising for the eventual commercialization of perovskite optoelectronic devices.