Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction
Introduction Liver parameters are associated with cardiovascular disease risk and severity of stenosis. It is unclear whether liver parameters could predict the long-term outcome of patients after acute myocardial infarction (AMI). We performed an unbiased analysis of the predictive value of serum p...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Termedia Publishing House
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/08464551f1f64ee48708edfc6e9c22a9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:08464551f1f64ee48708edfc6e9c22a9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:08464551f1f64ee48708edfc6e9c22a92021-12-02T19:15:42ZLiver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction1734-19221896-915110.5114/aoms.2018.75678https://doaj.org/article/08464551f1f64ee48708edfc6e9c22a92019-12-01T00:00:00Zhttps://www.archivesofmedicalscience.com/Liver-parameters-as-part-of-a-non-invasive-model-for-prediction-of-all-cause-mortality,75581,0,2.htmlhttps://doaj.org/toc/1734-1922https://doaj.org/toc/1896-9151Introduction Liver parameters are associated with cardiovascular disease risk and severity of stenosis. It is unclear whether liver parameters could predict the long-term outcome of patients after acute myocardial infarction (AMI). We performed an unbiased analysis of the predictive value of serum parameters for long-term prognosis after AMI. Material and methods In a retrospective, observational, single-center, cohort study, 569 patients after AMI were enrolled and followed up until 6 years for major adverse cardiovascular events, including cardiac death. Patients were classified into non-survivors (n = 156) and survivors (n = 413). Demographic and laboratory data were analyzed using ensemble feature selection (EFS) and logistic regression. Correlations were performed for serum parameters. Results Age (73; 64; p < 0.01), alanine aminotransferase (ALT; 93 U/l; 40 U/l; p < 0.01), aspartate aminotransferase (AST; 162 U/l; 66 U/l; p < 0.01), C-reactive protein (CRP; 4.7 U/l; 1.6 U/l; p < 0.01), creatinine (1.6; 1.3; p < 0.01), -glutamyltransferase (GGT; 71 U/l; 46 U/l; p < 0.01), urea (29.5; 20.5; p < 0.01), estimated glomerular filtration rate (eGFR; 49.6; 61.4; p < 0.01), troponin (13.3; 7.6; p < 0.01), myoglobin (639; 302; p < 0.01), and cardiovascular risk factors (hypercholesterolemia p < 0.02, family history p < 0.01, and smoking p < 0.01) differed significantly between non-survivors and survivors. Age, AST, CRP, eGFR, myoglobin, sodium, urea, creatinine, and troponin correlated significantly with death (r = –0.29; 0.14; 0.31; –0.27; 0.20; –0.13; 0.33; 0.24; 0.12). A prediction model was built including age, CRP, eGFR, myoglobin, and urea, achieving an AUROC of 77.6% to predict long-term survival after AMI. Conclusions Non-invasive parameters, including liver and renal markers, can predict long-term outcome of patients after AMI.Theodor BaarsJan-Peter SowaUrsula NeumannStefanie HendricksMona JinawyJulia KälschGuido GerkenTienush RassafDominik HeiderAli CanbayTermedia Publishing Housearticleliver enzymespercutaneous coronary interventionnon-invasive predictiontroponinMedicineRENArchives of Medical Science, Vol 16, Iss 1, Pp 71-80 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
liver enzymes percutaneous coronary intervention non-invasive prediction troponin Medicine R |
spellingShingle |
liver enzymes percutaneous coronary intervention non-invasive prediction troponin Medicine R Theodor Baars Jan-Peter Sowa Ursula Neumann Stefanie Hendricks Mona Jinawy Julia Kälsch Guido Gerken Tienush Rassaf Dominik Heider Ali Canbay Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction |
description |
Introduction
Liver parameters are associated with cardiovascular disease risk and severity of stenosis. It is unclear whether liver parameters could predict the long-term outcome of patients after acute myocardial infarction (AMI). We performed an unbiased analysis of the predictive value of serum parameters for long-term prognosis after AMI.
Material and methods
In a retrospective, observational, single-center, cohort study, 569 patients after AMI were enrolled and followed up until 6 years for major adverse cardiovascular events, including cardiac death. Patients were classified into non-survivors (n = 156) and survivors (n = 413). Demographic and laboratory data were analyzed using ensemble feature selection (EFS) and logistic regression. Correlations were performed for serum parameters.
Results
Age (73; 64; p < 0.01), alanine aminotransferase (ALT; 93 U/l; 40 U/l; p < 0.01), aspartate aminotransferase (AST; 162 U/l; 66 U/l; p < 0.01), C-reactive protein (CRP; 4.7 U/l; 1.6 U/l; p < 0.01), creatinine (1.6; 1.3; p < 0.01), -glutamyltransferase (GGT; 71 U/l; 46 U/l; p < 0.01), urea (29.5; 20.5; p < 0.01), estimated glomerular filtration rate (eGFR; 49.6; 61.4; p < 0.01), troponin (13.3; 7.6; p < 0.01), myoglobin (639; 302; p < 0.01), and cardiovascular risk factors (hypercholesterolemia p < 0.02, family history p < 0.01, and smoking p < 0.01) differed significantly between non-survivors and survivors. Age, AST, CRP, eGFR, myoglobin, sodium, urea, creatinine, and troponin correlated significantly with death (r = –0.29; 0.14; 0.31; –0.27; 0.20; –0.13; 0.33; 0.24; 0.12). A prediction model was built including age, CRP, eGFR, myoglobin, and urea, achieving an AUROC of 77.6% to predict long-term survival after AMI.
Conclusions
Non-invasive parameters, including liver and renal markers, can predict long-term outcome of patients after AMI. |
format |
article |
author |
Theodor Baars Jan-Peter Sowa Ursula Neumann Stefanie Hendricks Mona Jinawy Julia Kälsch Guido Gerken Tienush Rassaf Dominik Heider Ali Canbay |
author_facet |
Theodor Baars Jan-Peter Sowa Ursula Neumann Stefanie Hendricks Mona Jinawy Julia Kälsch Guido Gerken Tienush Rassaf Dominik Heider Ali Canbay |
author_sort |
Theodor Baars |
title |
Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction |
title_short |
Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction |
title_full |
Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction |
title_fullStr |
Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction |
title_full_unstemmed |
Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction |
title_sort |
liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction |
publisher |
Termedia Publishing House |
publishDate |
2019 |
url |
https://doaj.org/article/08464551f1f64ee48708edfc6e9c22a9 |
work_keys_str_mv |
AT theodorbaars liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction AT janpetersowa liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction AT ursulaneumann liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction AT stefaniehendricks liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction AT monajinawy liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction AT juliakalsch liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction AT guidogerken liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction AT tienushrassaf liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction AT dominikheider liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction AT alicanbay liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction |
_version_ |
1718376953528975360 |