Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction

Introduction Liver parameters are associated with cardiovascular disease risk and severity of stenosis. It is unclear whether liver parameters could predict the long-term outcome of patients after acute myocardial infarction (AMI). We performed an unbiased analysis of the predictive value of serum p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Theodor Baars, Jan-Peter Sowa, Ursula Neumann, Stefanie Hendricks, Mona Jinawy, Julia Kälsch, Guido Gerken, Tienush Rassaf, Dominik Heider, Ali Canbay
Formato: article
Lenguaje:EN
Publicado: Termedia Publishing House 2019
Materias:
R
Acceso en línea:https://doaj.org/article/08464551f1f64ee48708edfc6e9c22a9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:08464551f1f64ee48708edfc6e9c22a9
record_format dspace
spelling oai:doaj.org-article:08464551f1f64ee48708edfc6e9c22a92021-12-02T19:15:42ZLiver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction1734-19221896-915110.5114/aoms.2018.75678https://doaj.org/article/08464551f1f64ee48708edfc6e9c22a92019-12-01T00:00:00Zhttps://www.archivesofmedicalscience.com/Liver-parameters-as-part-of-a-non-invasive-model-for-prediction-of-all-cause-mortality,75581,0,2.htmlhttps://doaj.org/toc/1734-1922https://doaj.org/toc/1896-9151Introduction Liver parameters are associated with cardiovascular disease risk and severity of stenosis. It is unclear whether liver parameters could predict the long-term outcome of patients after acute myocardial infarction (AMI). We performed an unbiased analysis of the predictive value of serum parameters for long-term prognosis after AMI. Material and methods In a retrospective, observational, single-center, cohort study, 569 patients after AMI were enrolled and followed up until 6 years for major adverse cardiovascular events, including cardiac death. Patients were classified into non-survivors (n = 156) and survivors (n = 413). Demographic and laboratory data were analyzed using ensemble feature selection (EFS) and logistic regression. Correlations were performed for serum parameters. Results Age (73; 64; p < 0.01), alanine aminotransferase (ALT; 93 U/l; 40 U/l; p < 0.01), aspartate aminotransferase (AST; 162 U/l; 66 U/l; p < 0.01), C-reactive protein (CRP; 4.7 U/l; 1.6 U/l; p < 0.01), creatinine (1.6; 1.3; p < 0.01), -glutamyltransferase (GGT; 71 U/l; 46 U/l; p < 0.01), urea (29.5; 20.5; p < 0.01), estimated glomerular filtration rate (eGFR; 49.6; 61.4; p < 0.01), troponin (13.3; 7.6; p < 0.01), myoglobin (639; 302; p < 0.01), and cardiovascular risk factors (hypercholesterolemia p < 0.02, family history p < 0.01, and smoking p < 0.01) differed significantly between non-survivors and survivors. Age, AST, CRP, eGFR, myoglobin, sodium, urea, creatinine, and troponin correlated significantly with death (r = –0.29; 0.14; 0.31; –0.27; 0.20; –0.13; 0.33; 0.24; 0.12). A prediction model was built including age, CRP, eGFR, myoglobin, and urea, achieving an AUROC of 77.6% to predict long-term survival after AMI. Conclusions Non-invasive parameters, including liver and renal markers, can predict long-term outcome of patients after AMI.Theodor BaarsJan-Peter SowaUrsula NeumannStefanie HendricksMona JinawyJulia KälschGuido GerkenTienush RassafDominik HeiderAli CanbayTermedia Publishing Housearticleliver enzymespercutaneous coronary interventionnon-invasive predictiontroponinMedicineRENArchives of Medical Science, Vol 16, Iss 1, Pp 71-80 (2019)
institution DOAJ
collection DOAJ
language EN
topic liver enzymes
percutaneous coronary intervention
non-invasive prediction
troponin
Medicine
R
spellingShingle liver enzymes
percutaneous coronary intervention
non-invasive prediction
troponin
Medicine
R
Theodor Baars
Jan-Peter Sowa
Ursula Neumann
Stefanie Hendricks
Mona Jinawy
Julia Kälsch
Guido Gerken
Tienush Rassaf
Dominik Heider
Ali Canbay
Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction
description Introduction Liver parameters are associated with cardiovascular disease risk and severity of stenosis. It is unclear whether liver parameters could predict the long-term outcome of patients after acute myocardial infarction (AMI). We performed an unbiased analysis of the predictive value of serum parameters for long-term prognosis after AMI. Material and methods In a retrospective, observational, single-center, cohort study, 569 patients after AMI were enrolled and followed up until 6 years for major adverse cardiovascular events, including cardiac death. Patients were classified into non-survivors (n = 156) and survivors (n = 413). Demographic and laboratory data were analyzed using ensemble feature selection (EFS) and logistic regression. Correlations were performed for serum parameters. Results Age (73; 64; p < 0.01), alanine aminotransferase (ALT; 93 U/l; 40 U/l; p < 0.01), aspartate aminotransferase (AST; 162 U/l; 66 U/l; p < 0.01), C-reactive protein (CRP; 4.7 U/l; 1.6 U/l; p < 0.01), creatinine (1.6; 1.3; p < 0.01), -glutamyltransferase (GGT; 71 U/l; 46 U/l; p < 0.01), urea (29.5; 20.5; p < 0.01), estimated glomerular filtration rate (eGFR; 49.6; 61.4; p < 0.01), troponin (13.3; 7.6; p < 0.01), myoglobin (639; 302; p < 0.01), and cardiovascular risk factors (hypercholesterolemia p < 0.02, family history p < 0.01, and smoking p < 0.01) differed significantly between non-survivors and survivors. Age, AST, CRP, eGFR, myoglobin, sodium, urea, creatinine, and troponin correlated significantly with death (r = –0.29; 0.14; 0.31; –0.27; 0.20; –0.13; 0.33; 0.24; 0.12). A prediction model was built including age, CRP, eGFR, myoglobin, and urea, achieving an AUROC of 77.6% to predict long-term survival after AMI. Conclusions Non-invasive parameters, including liver and renal markers, can predict long-term outcome of patients after AMI.
format article
author Theodor Baars
Jan-Peter Sowa
Ursula Neumann
Stefanie Hendricks
Mona Jinawy
Julia Kälsch
Guido Gerken
Tienush Rassaf
Dominik Heider
Ali Canbay
author_facet Theodor Baars
Jan-Peter Sowa
Ursula Neumann
Stefanie Hendricks
Mona Jinawy
Julia Kälsch
Guido Gerken
Tienush Rassaf
Dominik Heider
Ali Canbay
author_sort Theodor Baars
title Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction
title_short Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction
title_full Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction
title_fullStr Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction
title_full_unstemmed Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction
title_sort liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction
publisher Termedia Publishing House
publishDate 2019
url https://doaj.org/article/08464551f1f64ee48708edfc6e9c22a9
work_keys_str_mv AT theodorbaars liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction
AT janpetersowa liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction
AT ursulaneumann liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction
AT stefaniehendricks liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction
AT monajinawy liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction
AT juliakalsch liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction
AT guidogerken liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction
AT tienushrassaf liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction
AT dominikheider liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction
AT alicanbay liverparametersaspartofanoninvasivemodelforpredictionofallcausemortalityaftermyocardialinfarction
_version_ 1718376953528975360