Protonic solid-state electrochemical synapse for physical neural networks
Designing energy efficient neural networks based on synaptic memristor devices remains a challenge. Here, the authors propose the development of a 3-terminal WO3 synaptic device based on proton intercalation in inorganic materials by leveraging a solid proton reservoir layer PdH x as the gate termin...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0856e109046d4101a3dd9ec0156e6679 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0856e109046d4101a3dd9ec0156e6679 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0856e109046d4101a3dd9ec0156e66792021-12-02T16:04:12ZProtonic solid-state electrochemical synapse for physical neural networks10.1038/s41467-020-16866-62041-1723https://doaj.org/article/0856e109046d4101a3dd9ec0156e66792020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16866-6https://doaj.org/toc/2041-1723Designing energy efficient neural networks based on synaptic memristor devices remains a challenge. Here, the authors propose the development of a 3-terminal WO3 synaptic device based on proton intercalation in inorganic materials by leveraging a solid proton reservoir layer PdH x as the gate terminal.Xiahui YaoKonstantin KlyukinWenjie LuMurat OnenSeungchan RyuDongha KimNicolas EmondIradwikanari WaluyoAdrian HuntJesús A. del AlamoJu LiBilge YildizNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Xiahui Yao Konstantin Klyukin Wenjie Lu Murat Onen Seungchan Ryu Dongha Kim Nicolas Emond Iradwikanari Waluyo Adrian Hunt Jesús A. del Alamo Ju Li Bilge Yildiz Protonic solid-state electrochemical synapse for physical neural networks |
description |
Designing energy efficient neural networks based on synaptic memristor devices remains a challenge. Here, the authors propose the development of a 3-terminal WO3 synaptic device based on proton intercalation in inorganic materials by leveraging a solid proton reservoir layer PdH x as the gate terminal. |
format |
article |
author |
Xiahui Yao Konstantin Klyukin Wenjie Lu Murat Onen Seungchan Ryu Dongha Kim Nicolas Emond Iradwikanari Waluyo Adrian Hunt Jesús A. del Alamo Ju Li Bilge Yildiz |
author_facet |
Xiahui Yao Konstantin Klyukin Wenjie Lu Murat Onen Seungchan Ryu Dongha Kim Nicolas Emond Iradwikanari Waluyo Adrian Hunt Jesús A. del Alamo Ju Li Bilge Yildiz |
author_sort |
Xiahui Yao |
title |
Protonic solid-state electrochemical synapse for physical neural networks |
title_short |
Protonic solid-state electrochemical synapse for physical neural networks |
title_full |
Protonic solid-state electrochemical synapse for physical neural networks |
title_fullStr |
Protonic solid-state electrochemical synapse for physical neural networks |
title_full_unstemmed |
Protonic solid-state electrochemical synapse for physical neural networks |
title_sort |
protonic solid-state electrochemical synapse for physical neural networks |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/0856e109046d4101a3dd9ec0156e6679 |
work_keys_str_mv |
AT xiahuiyao protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks AT konstantinklyukin protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks AT wenjielu protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks AT muratonen protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks AT seungchanryu protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks AT donghakim protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks AT nicolasemond protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks AT iradwikanariwaluyo protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks AT adrianhunt protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks AT jesusadelalamo protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks AT juli protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks AT bilgeyildiz protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks |
_version_ |
1718385251285204992 |