Protonic solid-state electrochemical synapse for physical neural networks

Designing energy efficient neural networks based on synaptic memristor devices remains a challenge. Here, the authors propose the development of a 3-terminal WO3 synaptic device based on proton intercalation in inorganic materials by leveraging a solid proton reservoir layer PdH x as the gate termin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiahui Yao, Konstantin Klyukin, Wenjie Lu, Murat Onen, Seungchan Ryu, Dongha Kim, Nicolas Emond, Iradwikanari Waluyo, Adrian Hunt, Jesús A. del Alamo, Ju Li, Bilge Yildiz
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/0856e109046d4101a3dd9ec0156e6679
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0856e109046d4101a3dd9ec0156e6679
record_format dspace
spelling oai:doaj.org-article:0856e109046d4101a3dd9ec0156e66792021-12-02T16:04:12ZProtonic solid-state electrochemical synapse for physical neural networks10.1038/s41467-020-16866-62041-1723https://doaj.org/article/0856e109046d4101a3dd9ec0156e66792020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16866-6https://doaj.org/toc/2041-1723Designing energy efficient neural networks based on synaptic memristor devices remains a challenge. Here, the authors propose the development of a 3-terminal WO3 synaptic device based on proton intercalation in inorganic materials by leveraging a solid proton reservoir layer PdH x as the gate terminal.Xiahui YaoKonstantin KlyukinWenjie LuMurat OnenSeungchan RyuDongha KimNicolas EmondIradwikanari WaluyoAdrian HuntJesús A. del AlamoJu LiBilge YildizNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Xiahui Yao
Konstantin Klyukin
Wenjie Lu
Murat Onen
Seungchan Ryu
Dongha Kim
Nicolas Emond
Iradwikanari Waluyo
Adrian Hunt
Jesús A. del Alamo
Ju Li
Bilge Yildiz
Protonic solid-state electrochemical synapse for physical neural networks
description Designing energy efficient neural networks based on synaptic memristor devices remains a challenge. Here, the authors propose the development of a 3-terminal WO3 synaptic device based on proton intercalation in inorganic materials by leveraging a solid proton reservoir layer PdH x as the gate terminal.
format article
author Xiahui Yao
Konstantin Klyukin
Wenjie Lu
Murat Onen
Seungchan Ryu
Dongha Kim
Nicolas Emond
Iradwikanari Waluyo
Adrian Hunt
Jesús A. del Alamo
Ju Li
Bilge Yildiz
author_facet Xiahui Yao
Konstantin Klyukin
Wenjie Lu
Murat Onen
Seungchan Ryu
Dongha Kim
Nicolas Emond
Iradwikanari Waluyo
Adrian Hunt
Jesús A. del Alamo
Ju Li
Bilge Yildiz
author_sort Xiahui Yao
title Protonic solid-state electrochemical synapse for physical neural networks
title_short Protonic solid-state electrochemical synapse for physical neural networks
title_full Protonic solid-state electrochemical synapse for physical neural networks
title_fullStr Protonic solid-state electrochemical synapse for physical neural networks
title_full_unstemmed Protonic solid-state electrochemical synapse for physical neural networks
title_sort protonic solid-state electrochemical synapse for physical neural networks
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/0856e109046d4101a3dd9ec0156e6679
work_keys_str_mv AT xiahuiyao protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks
AT konstantinklyukin protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks
AT wenjielu protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks
AT muratonen protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks
AT seungchanryu protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks
AT donghakim protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks
AT nicolasemond protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks
AT iradwikanariwaluyo protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks
AT adrianhunt protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks
AT jesusadelalamo protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks
AT juli protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks
AT bilgeyildiz protonicsolidstateelectrochemicalsynapseforphysicalneuralnetworks
_version_ 1718385251285204992