Protonic solid-state electrochemical synapse for physical neural networks
Designing energy efficient neural networks based on synaptic memristor devices remains a challenge. Here, the authors propose the development of a 3-terminal WO3 synaptic device based on proton intercalation in inorganic materials by leveraging a solid proton reservoir layer PdH x as the gate termin...
Guardado en:
Autores principales: | Xiahui Yao, Konstantin Klyukin, Wenjie Lu, Murat Onen, Seungchan Ryu, Dongha Kim, Nicolas Emond, Iradwikanari Waluyo, Adrian Hunt, Jesús A. del Alamo, Ju Li, Bilge Yildiz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0856e109046d4101a3dd9ec0156e6679 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparison of electrochemical impedance spectra for electrolyte-supported solid oxide fuel cells (SOFCs) and protonic ceramic fuel cells (PCFCs)
por: Hirofumi Sumi, et al.
Publicado: (2021) -
Learning through ferroelectric domain dynamics in solid-state synapses
por: Sören Boyn, et al.
Publicado: (2017) -
VGLUT1 functions as a glutamate/proton exchanger with chloride channel activity in hippocampal glutamatergic synapses
por: Magalie Martineau, et al.
Publicado: (2017) -
Understanding the apparent fractional charge of protons in the aqueous electrochemical double layer
por: Leanne D. Chen, et al.
Publicado: (2018) -
Three-dimensional protonic conductivity in porous organic cage solids
por: Ming Liu, et al.
Publicado: (2016)