Big Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers
The search and identification of outliers is a fundamental step, generally preparatory to the elaborations aimed at obtaining consistent results. The new approach devised for the identification of outliers in space R2 benefits from geometric / statistical techniques largely independent from the typ...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN IT |
Publicado: |
mediaGEO soc. coop.
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/08698e4e118f4e2baea7e541e8450d77 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:08698e4e118f4e2baea7e541e8450d77 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:08698e4e118f4e2baea7e541e8450d772021-11-09T17:50:50ZBig Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers10.48258/geo.v22i1.15201128-81322283-5687https://doaj.org/article/08698e4e118f4e2baea7e541e8450d772018-05-01T00:00:00Zhttps://www.mediageo.it/ojs/index.php/GEOmedia/article/view/1520https://doaj.org/toc/1128-8132https://doaj.org/toc/2283-5687 The search and identification of outliers is a fundamental step, generally preparatory to the elaborations aimed at obtaining consistent results. The new approach devised for the identification of outliers in space R2 benefits from geometric / statistical techniques largely independent from the type of data distribution, and is based on four methodological pillars: clustering, the convex hull peeling technique, a specific metric and Chebyshev's inequality, which is valid for any type of univariate distribution of values. The modularity and the generality of the approach, coupled to the research and identification of outliers based on strictly statistical parameters, make the approach presented a useful and daily tool for those who need to process bivariate data with the security of being able to previously identify outliers. Maurizio RosinamediaGEO soc. coop.articleCartographyGA101-1776Cadastral mappingGA109.5ENITGEOmedia, Vol 22, Iss 1 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN IT |
topic |
Cartography GA101-1776 Cadastral mapping GA109.5 |
spellingShingle |
Cartography GA101-1776 Cadastral mapping GA109.5 Maurizio Rosina Big Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers |
description |
The search and identification of outliers is a fundamental step, generally preparatory to the elaborations aimed at obtaining consistent results. The new approach devised for the identification of outliers in space R2 benefits from geometric / statistical techniques largely independent from the type of data distribution, and is based on four methodological pillars: clustering, the convex hull peeling technique, a specific metric and Chebyshev's inequality, which is valid for any type of univariate distribution of values. The modularity and the generality of the approach, coupled to the research and identification of outliers based on strictly statistical parameters, make the approach presented a useful and daily tool for those who need to process bivariate data with the security of being able to previously identify outliers.
|
format |
article |
author |
Maurizio Rosina |
author_facet |
Maurizio Rosina |
author_sort |
Maurizio Rosina |
title |
Big Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers |
title_short |
Big Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers |
title_full |
Big Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers |
title_fullStr |
Big Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers |
title_full_unstemmed |
Big Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers |
title_sort |
big data...a few outliers = big mistakes. un nuovo processo per l'individuazione di outliers |
publisher |
mediaGEO soc. coop. |
publishDate |
2018 |
url |
https://doaj.org/article/08698e4e118f4e2baea7e541e8450d77 |
work_keys_str_mv |
AT mauriziorosina bigdataafewoutliersbigmistakesunnuovoprocessoperlindividuazionedioutliers |
_version_ |
1718440808846196736 |