Big Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers

The search and identification of outliers is a fundamental step, generally preparatory to the elaborations aimed at obtaining consistent results. The new approach devised for the identification of outliers in space R2 benefits from geometric / statistical techniques largely independent from the typ...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Maurizio Rosina
Formato: article
Lenguaje:EN
IT
Publicado: mediaGEO soc. coop. 2018
Materias:
Acceso en línea:https://doaj.org/article/08698e4e118f4e2baea7e541e8450d77
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:08698e4e118f4e2baea7e541e8450d77
record_format dspace
spelling oai:doaj.org-article:08698e4e118f4e2baea7e541e8450d772021-11-09T17:50:50ZBig Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers10.48258/geo.v22i1.15201128-81322283-5687https://doaj.org/article/08698e4e118f4e2baea7e541e8450d772018-05-01T00:00:00Zhttps://www.mediageo.it/ojs/index.php/GEOmedia/article/view/1520https://doaj.org/toc/1128-8132https://doaj.org/toc/2283-5687 The search and identification of outliers is a fundamental step, generally preparatory to the elaborations aimed at obtaining consistent results. The new approach devised for the identification of outliers in space R2 benefits from geometric / statistical techniques largely independent from the type of data distribution, and is based on four methodological pillars: clustering, the convex hull peeling technique, a specific metric and Chebyshev's inequality, which is valid for any type of univariate distribution of values. The modularity and the generality of the approach, coupled to the research and identification of outliers based on strictly statistical parameters, make the approach presented a useful and daily tool for those who need to process bivariate data with the security of being able to previously identify outliers. Maurizio RosinamediaGEO soc. coop.articleCartographyGA101-1776Cadastral mappingGA109.5ENITGEOmedia, Vol 22, Iss 1 (2018)
institution DOAJ
collection DOAJ
language EN
IT
topic Cartography
GA101-1776
Cadastral mapping
GA109.5
spellingShingle Cartography
GA101-1776
Cadastral mapping
GA109.5
Maurizio Rosina
Big Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers
description The search and identification of outliers is a fundamental step, generally preparatory to the elaborations aimed at obtaining consistent results. The new approach devised for the identification of outliers in space R2 benefits from geometric / statistical techniques largely independent from the type of data distribution, and is based on four methodological pillars: clustering, the convex hull peeling technique, a specific metric and Chebyshev's inequality, which is valid for any type of univariate distribution of values. The modularity and the generality of the approach, coupled to the research and identification of outliers based on strictly statistical parameters, make the approach presented a useful and daily tool for those who need to process bivariate data with the security of being able to previously identify outliers.
format article
author Maurizio Rosina
author_facet Maurizio Rosina
author_sort Maurizio Rosina
title Big Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers
title_short Big Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers
title_full Big Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers
title_fullStr Big Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers
title_full_unstemmed Big Data...a few Outliers = Big Mistakes. Un nuovo processo per l'individuazione di outliers
title_sort big data...a few outliers = big mistakes. un nuovo processo per l'individuazione di outliers
publisher mediaGEO soc. coop.
publishDate 2018
url https://doaj.org/article/08698e4e118f4e2baea7e541e8450d77
work_keys_str_mv AT mauriziorosina bigdataafewoutliersbigmistakesunnuovoprocessoperlindividuazionedioutliers
_version_ 1718440808846196736