Efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives

Genetic data from large cohorts of unrelated individuals can be used to create polygenic risk scores, which could be used to predict individual risk of developing a specific disease. Here the authors show that smaller cohorts of related individuals can provide similarly powerful predictive ability.

Guardado en:
Detalles Bibliográficos
Autores principales: Buu Truong, Xuan Zhou, Jisu Shin, Jiuyong Li, Julius H. J. van der Werf, Thuc D. Le, S. Hong Lee
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/08755dc1466a43b28f5affeeb522ac79
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:08755dc1466a43b28f5affeeb522ac79
record_format dspace
spelling oai:doaj.org-article:08755dc1466a43b28f5affeeb522ac792021-12-02T16:04:17ZEfficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives10.1038/s41467-020-16829-x2041-1723https://doaj.org/article/08755dc1466a43b28f5affeeb522ac792020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16829-xhttps://doaj.org/toc/2041-1723Genetic data from large cohorts of unrelated individuals can be used to create polygenic risk scores, which could be used to predict individual risk of developing a specific disease. Here the authors show that smaller cohorts of related individuals can provide similarly powerful predictive ability.Buu TruongXuan ZhouJisu ShinJiuyong LiJulius H. J. van der WerfThuc D. LeS. Hong LeeNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Buu Truong
Xuan Zhou
Jisu Shin
Jiuyong Li
Julius H. J. van der Werf
Thuc D. Le
S. Hong Lee
Efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives
description Genetic data from large cohorts of unrelated individuals can be used to create polygenic risk scores, which could be used to predict individual risk of developing a specific disease. Here the authors show that smaller cohorts of related individuals can provide similarly powerful predictive ability.
format article
author Buu Truong
Xuan Zhou
Jisu Shin
Jiuyong Li
Julius H. J. van der Werf
Thuc D. Le
S. Hong Lee
author_facet Buu Truong
Xuan Zhou
Jisu Shin
Jiuyong Li
Julius H. J. van der Werf
Thuc D. Le
S. Hong Lee
author_sort Buu Truong
title Efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives
title_short Efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives
title_full Efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives
title_fullStr Efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives
title_full_unstemmed Efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives
title_sort efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/08755dc1466a43b28f5affeeb522ac79
work_keys_str_mv AT buutruong efficientpolygenicriskscoresforbiobankscaledatabyexploitingphenotypesfrominferredrelatives
AT xuanzhou efficientpolygenicriskscoresforbiobankscaledatabyexploitingphenotypesfrominferredrelatives
AT jisushin efficientpolygenicriskscoresforbiobankscaledatabyexploitingphenotypesfrominferredrelatives
AT jiuyongli efficientpolygenicriskscoresforbiobankscaledatabyexploitingphenotypesfrominferredrelatives
AT juliushjvanderwerf efficientpolygenicriskscoresforbiobankscaledatabyexploitingphenotypesfrominferredrelatives
AT thucdle efficientpolygenicriskscoresforbiobankscaledatabyexploitingphenotypesfrominferredrelatives
AT shonglee efficientpolygenicriskscoresforbiobankscaledatabyexploitingphenotypesfrominferredrelatives
_version_ 1718385251499114496