Efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives
Genetic data from large cohorts of unrelated individuals can be used to create polygenic risk scores, which could be used to predict individual risk of developing a specific disease. Here the authors show that smaller cohorts of related individuals can provide similarly powerful predictive ability.
Guardado en:
Autores principales: | Buu Truong, Xuan Zhou, Jisu Shin, Jiuyong Li, Julius H. J. van der Werf, Thuc D. Le, S. Hong Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/08755dc1466a43b28f5affeeb522ac79 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Oxytocin-pathway polygenic scores for severe mental disorders and metabolic phenotypes in the UK Biobank
por: Adriano Winterton, et al.
Publicado: (2021) -
Polygenic risk scores and rheumatic diseases
por: Matthew A. Brown, et al.
Publicado: (2021) -
On cross-ancestry cancer polygenic risk scores.
por: Lars G Fritsche, et al.
Publicado: (2021) -
A phenome-wide association and Mendelian Randomisation study of polygenic risk for depression in UK Biobank
por: Xueyi Shen, et al.
Publicado: (2020) -
Polygenic risk scores across the extended psychosis spectrum
por: Lukasz Smigielski, et al.
Publicado: (2021)