Yet Another Automated Gleason Grading System (YAAGGS) by weakly supervised deep learning
Abstract The Gleason score contributes significantly in predicting prostate cancer outcomes and selecting the appropriate treatment option, which is affected by well-known inter-observer variations. We present a novel deep learning-based automated Gleason grading system that does not require extensi...
Guardado en:
Autores principales: | Yechan Mun, Inyoung Paik, Su-Jin Shin, Tae-Yeong Kwak, Hyeyoon Chang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/08a6d46ceef34a1fb3100d3ff605886b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Weak supervision as an efficient approach for automated seizure detection in electroencephalography
por: Khaled Saab, et al.
Publicado: (2020) -
Author Correction: Automated Gleason grading of prostate cancer tissue microarrays via deep learning
por: Eirini Arvaniti, et al.
Publicado: (2021) -
Yet Another New Variant of Szász–Mirakyan Operator
por: Ana Maria Acu, et al.
Publicado: (2021) -
Yet another variant of the Drygas functional equation on groups
por: Sahoo,Prasanna K
Publicado: (2017) -
Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study
por: Mohsin Bilal, PhD, et al.
Publicado: (2021)