Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach
Abstract The capacity of marine organisms to adapt and/or acclimate to climate change might differ among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populatio...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/08ac2888bc35439189cea94ad757d358 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:08ac2888bc35439189cea94ad757d358 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:08ac2888bc35439189cea94ad757d3582021-12-02T14:16:49ZEffect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach10.1038/s41598-021-82094-72045-2322https://doaj.org/article/08ac2888bc35439189cea94ad757d3582021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82094-7https://doaj.org/toc/2045-2322Abstract The capacity of marine organisms to adapt and/or acclimate to climate change might differ among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidification (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong). Using laboratory mesocosm experiments, we found that juvenile Macrocystis sporophyte responses to OW and OA did not differ among populations: elevated temperature reduced growth while OA had no effect on growth and photosynthesis. However, we observed higher growth rates and NO3 − assimilation, and enhanced expression of metabolic-genes involved in the NO3 − and CO2 assimilation in individuals from the strong upwelling site. Our results suggest that despite no inter-population differences in response to OA and OW, intrinsic differences among populations might be related to their natural variability in CO2, NO3 − and seawater temperatures driven by coastal upwelling. Further work including additional populations and fluctuating climate change conditions rather than static values are needed to precisely determine how natural variability in environmental conditions might influence a species’ response to climate change.Pamela A. FernándezJorge M. NavarroCarolina CamusRodrigo TorresAlejandro H. BuschmannNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Pamela A. Fernández Jorge M. Navarro Carolina Camus Rodrigo Torres Alejandro H. Buschmann Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach |
description |
Abstract The capacity of marine organisms to adapt and/or acclimate to climate change might differ among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidification (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong). Using laboratory mesocosm experiments, we found that juvenile Macrocystis sporophyte responses to OW and OA did not differ among populations: elevated temperature reduced growth while OA had no effect on growth and photosynthesis. However, we observed higher growth rates and NO3 − assimilation, and enhanced expression of metabolic-genes involved in the NO3 − and CO2 assimilation in individuals from the strong upwelling site. Our results suggest that despite no inter-population differences in response to OA and OW, intrinsic differences among populations might be related to their natural variability in CO2, NO3 − and seawater temperatures driven by coastal upwelling. Further work including additional populations and fluctuating climate change conditions rather than static values are needed to precisely determine how natural variability in environmental conditions might influence a species’ response to climate change. |
format |
article |
author |
Pamela A. Fernández Jorge M. Navarro Carolina Camus Rodrigo Torres Alejandro H. Buschmann |
author_facet |
Pamela A. Fernández Jorge M. Navarro Carolina Camus Rodrigo Torres Alejandro H. Buschmann |
author_sort |
Pamela A. Fernández |
title |
Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach |
title_short |
Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach |
title_full |
Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach |
title_fullStr |
Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach |
title_full_unstemmed |
Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach |
title_sort |
effect of environmental history on the habitat-forming kelp macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/08ac2888bc35439189cea94ad757d358 |
work_keys_str_mv |
AT pamelaafernandez effectofenvironmentalhistoryonthehabitatformingkelpmacrocystispyriferaresponsestooceanacidificationandwarmingaphysiologicalandmolecularapproach AT jorgemnavarro effectofenvironmentalhistoryonthehabitatformingkelpmacrocystispyriferaresponsestooceanacidificationandwarmingaphysiologicalandmolecularapproach AT carolinacamus effectofenvironmentalhistoryonthehabitatformingkelpmacrocystispyriferaresponsestooceanacidificationandwarmingaphysiologicalandmolecularapproach AT rodrigotorres effectofenvironmentalhistoryonthehabitatformingkelpmacrocystispyriferaresponsestooceanacidificationandwarmingaphysiologicalandmolecularapproach AT alejandrohbuschmann effectofenvironmentalhistoryonthehabitatformingkelpmacrocystispyriferaresponsestooceanacidificationandwarmingaphysiologicalandmolecularapproach |
_version_ |
1718391647471927296 |