Genetic mutation and biological pathway prediction based on whole slide images in breast carcinoma using deep learning
Abstract Breast carcinoma is the most common cancer among women worldwide that consists of a heterogeneous group of subtype diseases. The whole-slide images (WSIs) can capture the cell-level heterogeneity, and are routinely used for cancer diagnosis by pathologists. However, key driver genetic mutat...
Enregistré dans:
Auteurs principaux: | Hui Qu, Mu Zhou, Zhennan Yan, He Wang, Vinod K. Rustgi, Shaoting Zhang, Olivier Gevaert, Dimitris N. Metaxas |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/08b773bbbe0c42f8a2e65a6cbf18368a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A deep learning model for the classification of indeterminate lung carcinoma in biopsy whole slide images
par: Fahdi Kanavati, et autres
Publié: (2021) -
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
par: Fahdi Kanavati, et autres
Publié: (2021) -
A generalized deep learning framework for whole-slide image segmentation and analysis
par: Mahendra Khened, et autres
Publié: (2021) -
Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
par: Charlotte Syrykh, et autres
Publié: (2020) -
Robust whole slide image analysis for cervical cancer screening using deep learning
par: Shenghua Cheng, et autres
Publié: (2021)