DW-UNet: Loss Balance under Local-Patch for 3D Infection Segmentation from COVID-19 CT Images
(1) Background: COVID-19 has been global epidemic. This work aims to extract 3D infection from COVID-19 CT images; (2) Methods: Firstly, COVID-19 CT images are processed with lung region extraction and data enhancement. In this strategy, gradient changes of voxels in different directions respond to...
Guardado en:
Autores principales: | Cheng Chen, Jiancang Zhou, Kangneng Zhou, Zhiliang Wang, Ruoxiu Xiao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/08b8ddd4758d43b2b95187f2f6862b1a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
CRF-EfficientUNet: An Improved UNet Framework for Polyp Segmentation in Colonoscopy Images With Combined Asymmetric Loss Function and CRF-RNN Layer
por: Le Thi Thu Hong, et al.
Publicado: (2021) -
Deep Learning-Augmented Head and Neck Organs at Risk Segmentation From CT Volumes
por: Wei Wang, et al.
Publicado: (2021) -
Health Vigilance for Medical Imaging Diagnostic Optimization: Automated segmentation of COVID-19 lung infection from CT images
por: Mohamed Chala, et al.
Publicado: (2021) -
Concatenated Residual Attention UNet for Semantic Segmentation of Urban Green Space
por: Guoqiang Men, et al.
Publicado: (2021) -
A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery
por: Saüc Abadal, et al.
Publicado: (2021)