EERA-KWS: A 163 TOPS/W Always-on Keyword Spotting Accelerator in 28nm CMOS Using Binary Weight Network and Precision Self-Adaptive Approximate Computing
This paper proposed an energy-efficient reconfigurable accelerator for keyword spotting (EERA-KWS) based on binary weight network (BWN) and fabricated in 28-nm CMOS technology. This keyword spotting system consists of two parts: the feature extraction based on melscale frequency cepstral coefficient...
Guardado en:
Autores principales: | Bo Liu, Zhen Wang, Hu Fan, Jing Yang, Wentao Zhu, Lepeng Huang, Yu Gong, Wei Ge, Longxing Shi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/08b9754fd8cb4ab6905f47947b201669 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Approximate Noether Symmetries of Perturbed Lagrangians and Approximate Conservation Laws
por: Matteo Gorgone, et al.
Publicado: (2021) - Journal of approximation theory
-
Surveys in approximation theory
Publicado: (2005) -
On–Off Scheduling for Electric Vehicle Charging in Two-Links Charging Stations Using Binary Optimization Approaches
por: Rafał Zdunek, et al.
Publicado: (2021) -
The stability of fuzzy approximately Jordan mappings
por: Eghbali,N., et al.
Publicado: (2013)