R2DT is a framework for predicting and visualising RNA secondary structure using templates
Non-coding RNA function is poorly understood, partly due to the challenge of determining RNA secondary (2D) structure. Here, the authors present a framework for the reproducible prediction and visualization of the 2D structure of a wide array of RNAs, which enables linking RNA sequence to function.
Guardado en:
Autores principales: | Blake A. Sweeney, David Hoksza, Eric P. Nawrocki, Carlos Eduardo Ribas, Fábio Madeira, Jamie J. Cannone, Robin Gutell, Aparna Maddala, Caeden D. Meade, Loren Dean Williams, Anton S. Petrov, Patricia P. Chan, Todd M. Lowe, Robert D. Finn, Anton I. Petrov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/08c55853e54b4060954e1a43ffedc3a6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
TwinCons: Conservation score for uncovering deep sequence similarity and divergence.
por: Petar I Penev, et al.
Publicado: (2021) -
TwinCons: Conservation score for uncovering deep sequence similarity and divergence
por: Petar I. Penev, et al.
Publicado: (2021) -
Carotid wall imaging with 3D_T2_FFE: sequence parameter optimization and comparison with 3D_T2_SPACE
por: Ang Yang, et al.
Publicado: (2021) -
Digital Twin (DT) in Smart Energy Systems - Systematic Literature Review of DT as a growing solution for Energy Internet of the Things (EIoT)
por: Aghazadeh Ardebili Ali, et al.
Publicado: (2021) -
Construction, visualisation, and clustering of transcription networks from microarray expression data.
por: Tom C Freeman, et al.
Publicado: (2007)