Automatic Thalamus Segmentation from Magnetic Resonance Images Using Multiple Atlases Level Set Framework (MALSF)
Abstract In this paper, we present an original multiple atlases level set framework (MALSF) for automatic, accurate and robust thalamus segmentation in magnetic resonance images (MRI). The contributions of the MALSF method are twofold. First, the main technical contribution is a novel label fusion s...
Enregistré dans:
Auteurs principaux: | Minghui Zhang, Zhentai Lu, Qianjin Feng, Yu Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/08dcd9bf2dba4f949fe3233d2c39b03c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A magnetic resonance image based atlas of the rabbit brain for automatic parcellation.
par: Emma Muñoz-Moreno, et autres
Publié: (2013) -
Segmented Multistage Reconstruction of Magnetic Resonance Images
par: FARIS, M., et autres
Publié: (2021) -
A novel combined level set model for automatic MR image segmentation
par: Li Jianzhang, et autres
Publié: (2020) -
A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth
par: Ali Gholipour, et autres
Publié: (2017) - Thalamus & related systems