Ancestral informative marker selection and population structure visualization using sparse Laplacian eigenfunctions.
Identification of a small panel of population structure informative markers can reduce genotyping cost and is useful in various applications, such as ancestry inference in association mapping, forensics and evolutionary theory in population genetics. Traditional methods to ascertain ancestral inform...
Guardado en:
Autor principal: | Jun Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/08e01f08b5504315b98de80a2334801c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Laplacian eigenfunctions learn population structure.
por: Jun Zhang, et al.
Publicado: (2009) -
Sparse Graph Learning Under Laplacian-Related Constraints
por: Jitendra K. Tugnait
Publicado: (2021) -
Vortex knots in tangled quantum eigenfunctions
por: Alexander J. Taylor, et al.
Publicado: (2016) -
Hyperspectral image spectral-spatial classification via weighted Laplacian smoothing constraint-based sparse representation.
por: Eryang Chen, et al.
Publicado: (2021) -
Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
por: Erik M. Bollt, et al.
Publicado: (2021)