A Way to Automatically Generate Lane Level Traffic Data from Video in the Intersections
Lane level traffic data such as average waiting time and flow data at each turn direction not only enable navigation systems to provide users with more detailed and finer-grained information; it can also pave the way for future traffic congestion prediction. Although few studies considered extractin...
Enregistré dans:
Auteurs principaux: | Zhongguo Yang, Sikandar Ali, Weilong Ding, Irshad Ahmed Abbasi, Muhammad Faizan Khan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi-Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/08e353aab39c4023b27b3d6987d44f48 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Traffic Foreground Detection at Complex Urban Intersections Using a Novel Background Dictionary Learning Model
par: Qianxia Cao, et autres
Publié: (2021) -
Relieving the Congestion around a School via Automatic Vehicle Identification Technology-Based Traffic Measures
par: Bo Li, et autres
Publié: (2021) -
A Deep Reinforcement Learning Approach for Ramp Metering Based on Traffic Video Data
par: Bing Liu, et autres
Publié: (2021) -
Study on the Optimization of Hub-and-Spoke Logistics Network regarding Traffic Congestion
par: Wei Xu, et autres
Publié: (2021) -
Modeling Tourists’ Departure Time considering the Influence of Multisource Traffic Information
par: Shijun Yu, et autres
Publié: (2021)