A Universal 3D Voxel Descriptor for Solid-State Material Informatics with Deep Convolutional Neural Networks
Abstract Material informatics (MI) is a promising approach to liberate us from the time-consuming Edisonian (trial and error) process for material discoveries, driven by machine-learning algorithms. Several descriptors, which are encoded material features to feed computers, were proposed in the last...
Guardado en:
Autores principales: | Seiji Kajita, Nobuko Ohba, Ryosuke Jinnouchi, Ryoji Asahi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/08e609fd8d164525ba0be3498a88455a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identifying superionic conductors by materials informatics and high-throughput synthesis
por: Masato Matsubara, et al.
Publicado: (2020) -
Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry
por: Christopher J. Bartel, et al.
Publicado: (2018) -
Deep Convolutional Neural Network Ensembles Using ECOC
por: Sara Atito Ali Ahmed, et al.
Publicado: (2021) -
CO oxidation activity of non-reducible oxide-supported mass-selected few-atom Pt single-clusters
por: Atsushi Beniya, et al.
Publicado: (2020) -
Deep convolutional neural networks for accurate somatic mutation detection
por: Sayed Mohammad Ebrahim Sahraeian, et al.
Publicado: (2019)