An Improved Approach to Enhance Training Performance of ANN and the Prediction of PV Power for Any Time-Span without the Presence of Real-Time Weather Data
In this work, an improved approach to enhance the training performance of an Artificial Neural Network (ANN) for prediction of the output of renewable energy systems is proposed. Using the proposed approach, a significant reduction of the Mean Squared Error (MSE) in training performance is achieved,...
Guardado en:
Autores principales: | Abdul Rauf Bhatti, Ahmed Bilal Awan, Walied Alharbi, Zainal Salam, Abdullah S. Bin Humayd, Praveen R. P., Kankar Bhattacharya |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/08e8e42e923d471383cf2f4c513c16b9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Flexible Active Power Control for PV-ESS Systems: A Review
por: Xiangqiang Wu, et al.
Publicado: (2021) -
A Bi-Level Control Strategy for PV-BES System Aiming at the Minimum Operation Cost of BES
por: Yuchen Hao, et al.
Publicado: (2021) -
Integrating Photovoltaic (PV) Solar Cells and Supercapacitors for Sustainable Energy Devices: A Review
por: Noor Afeefah Nordin, et al.
Publicado: (2021) -
Assessing Maximum Power Point Tracking Intelligent Techniques on a PV System with a Buck–Boost Converter
por: Maria I. S. Guerra, et al.
Publicado: (2021) -
A Grid-tied PV Inverter with Sag-severity-independent Low-voltage Ride Through, Reactive Power Support, and Islanding Protection
por: Muhammad Talha, et al.
Publicado: (2021)