Applying machine learning for drought prediction in a perfect model framework using data from a large ensemble of climate simulations
<p>There is a strong scientific and social interest in understanding the factors leading to extreme events in order to improve the management of risks associated with hazards like droughts. In this study, artificial neural networks are applied to predict the occurrence of a drought in two cont...
Guardado en:
Autores principales: | E. Felsche, R. Ludwig |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/08f07a6ac58d472cbee517d11574ce75 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A unified probabilistic framework for volcanic hazard and eruption forecasting
por: W. Marzocchi, et al.
Publicado: (2021) -
Multiple hazards and risk perceptions over time: the availability heuristic in Italy and Sweden under COVID-19
por: G. Di Baldassarre, et al.
Publicado: (2021) -
Data-based wildfire risk model for Mediterranean ecosystems – case study of the Concepción metropolitan area in central Chile
por: E. Jaque Castillo, et al.
Publicado: (2021) -
Tidal flood area mapping in the face of climate change scenarios: case study in a tropical estuary in the Brazilian semi-arid region
por: P. V. N. Araújo, et al.
Publicado: (2021) -
Review article: Extreme marine events revealed by lagoonal sedimentary records in Ghar El Melh during the last 2500 years in the northeast of Tunisia
por: B. S. Kohila, et al.
Publicado: (2021)