Rational design of chemically complex metallic glasses by hybrid modeling guided machine learning
Abstract The compositional design of metallic glasses (MGs) is a long-standing issue in materials science and engineering. However, traditional experimental approaches based on empirical rules are time consuming with a low efficiency. In this work, we successfully developed a hybrid machine learning...
Guardado en:
Autores principales: | Z. Q. Zhou, Q. F. He, X. D. Liu, Q. Wang, J. H. Luan, C. T. Liu, Y. Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0908c53c80d347a2af2c2dfa3e1b2dc5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses
por: Zhichao Lu, et al.
Publicado: (2020) -
Predicting the propensity for thermally activated β events in metallic glasses via interpretable machine learning
por: Qi Wang, et al.
Publicado: (2020) -
Computational modeling sheds light on structural evolution in metallic glasses and supercooled liquids
por: Jun Ding, et al.
Publicado: (2017) -
Glass transition temperature prediction of disordered molecular solids
por: Kun-Han Lin, et al.
Publicado: (2021) -
Thermal transport and phase transitions of zirconia by on-the-fly machine-learned interatomic potentials
por: Carla Verdi, et al.
Publicado: (2021)