Atomization characteristics and instabilities in the combustion of multi-component fuel droplets with high volatility differential
Abstract We delineate and examine the successive stages of ligament-mediated atomization of burning multi-component fuel droplets. Time-resolved high-speed imaging experiments are performed with fuel blends (butanol/Jet A-1 and ethanol/Jet A-1) comprising wide volatility differential, which undergo...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/090ca2acb1b14c42badd424e669b11cf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract We delineate and examine the successive stages of ligament-mediated atomization of burning multi-component fuel droplets. Time-resolved high-speed imaging experiments are performed with fuel blends (butanol/Jet A-1 and ethanol/Jet A-1) comprising wide volatility differential, which undergo distinct modes of secondary atomization. Upon the breakup of vapor bubble, depending on the aspect ratio, ligaments grow and break into well-defined (size) droplets for each mode of atomization. The breakup modes either induce mild/intense oscillations on the droplet or completely disintegrate the droplet (micro-explosion). For the blends with a relatively low volatility difference between the components, only bubble expansion contributes to the micro-explosion. In contrast, for blends with high volatility differential, both bubble growth as well as the instability at the interface contribute towards droplet breakup. The wrinkling pattern at the vapor-liquid interface suggests that a Rayleigh-Taylor type of instability triggered at the interface further expedites the droplet breakup. |
---|