Learning algorithms allow for improved reliability and accuracy of global mean surface temperature projections
The ensemble spread of climate models is often interpreted as the uncertainty of the projection, but this is not always justified. Applying learning algorithms to an ensemble of climate predictions allows for a significant uncertainty reduction of projected global mean surface temperatures compared...
Enregistré dans:
Auteurs principaux: | Ehud Strobach, Golan Bel |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/091cdd00c72a4b78b45a73bb4d21935a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Optimizing the quality of construction projects based on system reliability theory using improved Min-Max ant colony algorithm
par: Saeed Najafi Zangeneh, et autres
Publié: (2020) -
An Improved K-Means Algorithm Based on Evidence Distance
par: Ailin Zhu, et autres
Publié: (2021) -
The relation between natural variations in ocean heat uptake and global mean surface temperature anomalies in CMIP5
par: Sybren Drijfhout
Publié: (2018) -
Ocean surface energy balance allows a constraint on the sensitivity of precipitation to global warming
par: Wei Wang, et autres
Publié: (2021) -
Reconciling global mean and regional sea level change in projections and observations
par: Jinping Wang, et autres
Publié: (2021)