Learning algorithms allow for improved reliability and accuracy of global mean surface temperature projections
The ensemble spread of climate models is often interpreted as the uncertainty of the projection, but this is not always justified. Applying learning algorithms to an ensemble of climate predictions allows for a significant uncertainty reduction of projected global mean surface temperatures compared...
Guardado en:
Autores principales: | Ehud Strobach, Golan Bel |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/091cdd00c72a4b78b45a73bb4d21935a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Optimizing the quality of construction projects based on system reliability theory using improved Min-Max ant colony algorithm
por: Saeed Najafi Zangeneh, et al.
Publicado: (2020) -
An Improved K-Means Algorithm Based on Evidence Distance
por: Ailin Zhu, et al.
Publicado: (2021) -
The relation between natural variations in ocean heat uptake and global mean surface temperature anomalies in CMIP5
por: Sybren Drijfhout
Publicado: (2018) -
Ocean surface energy balance allows a constraint on the sensitivity of precipitation to global warming
por: Wei Wang, et al.
Publicado: (2021) -
Reconciling global mean and regional sea level change in projections and observations
por: Jinping Wang, et al.
Publicado: (2021)