Properties of multiplication operators on the space of functions of bounded φ-variation
In this paper, the functions u∈BVφ[0,1]u\in B{V}_{\varphi }\left[0,1] which define compact and Fredholm multiplication operators Mu{M}_{u} acting on the space of functions of bounded φ\varphi -variation are studied. All the functions u∈BVφ[0,1]u\hspace{-0.08em}\in \hspace{-0.08em}B{V}_{\varphi }\lef...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/093254f3df2e4163b67462802c2b5e21 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this paper, the functions u∈BVφ[0,1]u\in B{V}_{\varphi }\left[0,1] which define compact and Fredholm multiplication operators Mu{M}_{u} acting on the space of functions of bounded φ\varphi -variation are studied. All the functions u∈BVφ[0,1]u\hspace{-0.08em}\in \hspace{-0.08em}B{V}_{\varphi }\left[0,\hspace{-0.08em}1] which define multiplication operators Mu:BVφ[0,1]→BVφ[0,1]{M}_{u}:B{V}_{\varphi }\left[0,1]\to B{V}_{\varphi }\left[0,1] with closed range are characterized. |
---|