Properties of multiplication operators on the space of functions of bounded φ-variation

In this paper, the functions u∈BVφ[0,1]u\in B{V}_{\varphi }\left[0,1] which define compact and Fredholm multiplication operators Mu{M}_{u} acting on the space of functions of bounded φ\varphi -variation are studied. All the functions u∈BVφ[0,1]u\hspace{-0.08em}\in \hspace{-0.08em}B{V}_{\varphi }\lef...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Castillo René E., Ramos-Fernández Julio C., Vacca-González Harold
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/093254f3df2e4163b67462802c2b5e21
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, the functions u∈BVφ[0,1]u\in B{V}_{\varphi }\left[0,1] which define compact and Fredholm multiplication operators Mu{M}_{u} acting on the space of functions of bounded φ\varphi -variation are studied. All the functions u∈BVφ[0,1]u\hspace{-0.08em}\in \hspace{-0.08em}B{V}_{\varphi }\left[0,\hspace{-0.08em}1] which define multiplication operators Mu:BVφ[0,1]→BVφ[0,1]{M}_{u}:B{V}_{\varphi }\left[0,1]\to B{V}_{\varphi }\left[0,1] with closed range are characterized.