Properties of multiplication operators on the space of functions of bounded φ-variation

In this paper, the functions u∈BVφ[0,1]u\in B{V}_{\varphi }\left[0,1] which define compact and Fredholm multiplication operators Mu{M}_{u} acting on the space of functions of bounded φ\varphi -variation are studied. All the functions u∈BVφ[0,1]u\hspace{-0.08em}\in \hspace{-0.08em}B{V}_{\varphi }\lef...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Castillo René E., Ramos-Fernández Julio C., Vacca-González Harold
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/093254f3df2e4163b67462802c2b5e21
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:093254f3df2e4163b67462802c2b5e21
record_format dspace
spelling oai:doaj.org-article:093254f3df2e4163b67462802c2b5e212021-12-05T14:10:53ZProperties of multiplication operators on the space of functions of bounded φ-variation2391-545510.1515/math-2021-0050https://doaj.org/article/093254f3df2e4163b67462802c2b5e212021-06-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0050https://doaj.org/toc/2391-5455In this paper, the functions u∈BVφ[0,1]u\in B{V}_{\varphi }\left[0,1] which define compact and Fredholm multiplication operators Mu{M}_{u} acting on the space of functions of bounded φ\varphi -variation are studied. All the functions u∈BVφ[0,1]u\hspace{-0.08em}\in \hspace{-0.08em}B{V}_{\varphi }\left[0,\hspace{-0.08em}1] which define multiplication operators Mu:BVφ[0,1]→BVφ[0,1]{M}_{u}:B{V}_{\varphi }\left[0,1]\to B{V}_{\varphi }\left[0,1] with closed range are characterized.Castillo René E.Ramos-Fernández Julio C.Vacca-González HaroldDe Gruyterarticlemultiplication operatorbounded variation functionscompact operatorsfredholm operators47b3826a4526b3046e40MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 492-504 (2021)
institution DOAJ
collection DOAJ
language EN
topic multiplication operator
bounded variation functions
compact operators
fredholm operators
47b38
26a45
26b30
46e40
Mathematics
QA1-939
spellingShingle multiplication operator
bounded variation functions
compact operators
fredholm operators
47b38
26a45
26b30
46e40
Mathematics
QA1-939
Castillo René E.
Ramos-Fernández Julio C.
Vacca-González Harold
Properties of multiplication operators on the space of functions of bounded φ-variation
description In this paper, the functions u∈BVφ[0,1]u\in B{V}_{\varphi }\left[0,1] which define compact and Fredholm multiplication operators Mu{M}_{u} acting on the space of functions of bounded φ\varphi -variation are studied. All the functions u∈BVφ[0,1]u\hspace{-0.08em}\in \hspace{-0.08em}B{V}_{\varphi }\left[0,\hspace{-0.08em}1] which define multiplication operators Mu:BVφ[0,1]→BVφ[0,1]{M}_{u}:B{V}_{\varphi }\left[0,1]\to B{V}_{\varphi }\left[0,1] with closed range are characterized.
format article
author Castillo René E.
Ramos-Fernández Julio C.
Vacca-González Harold
author_facet Castillo René E.
Ramos-Fernández Julio C.
Vacca-González Harold
author_sort Castillo René E.
title Properties of multiplication operators on the space of functions of bounded φ-variation
title_short Properties of multiplication operators on the space of functions of bounded φ-variation
title_full Properties of multiplication operators on the space of functions of bounded φ-variation
title_fullStr Properties of multiplication operators on the space of functions of bounded φ-variation
title_full_unstemmed Properties of multiplication operators on the space of functions of bounded φ-variation
title_sort properties of multiplication operators on the space of functions of bounded φ-variation
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/093254f3df2e4163b67462802c2b5e21
work_keys_str_mv AT castillorenee propertiesofmultiplicationoperatorsonthespaceoffunctionsofboundedphvariation
AT ramosfernandezjulioc propertiesofmultiplicationoperatorsonthespaceoffunctionsofboundedphvariation
AT vaccagonzalezharold propertiesofmultiplicationoperatorsonthespaceoffunctionsofboundedphvariation
_version_ 1718371582041128960