Properties of multiplication operators on the space of functions of bounded φ-variation
In this paper, the functions u∈BVφ[0,1]u\in B{V}_{\varphi }\left[0,1] which define compact and Fredholm multiplication operators Mu{M}_{u} acting on the space of functions of bounded φ\varphi -variation are studied. All the functions u∈BVφ[0,1]u\hspace{-0.08em}\in \hspace{-0.08em}B{V}_{\varphi }\lef...
Guardado en:
Autores principales: | Castillo René E., Ramos-Fernández Julio C., Vacca-González Harold |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/093254f3df2e4163b67462802c2b5e21 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Range-Kernel orthogonality and elementary operators on certain Banach spaces
por: Bachir Ahmed, et al.
Publicado: (2021) -
Range-kernel weak orthogonality of some elementary operators
por: Bachir Ahmed, et al.
Publicado: (2021) -
Upper triangular operator matrices and limit points of the essential spectrum
por: Karmouni,M., et al.
Publicado: (2019) -
The dual of the space of bounded operators on a Banach space
por: Botelho Fernanda, et al.
Publicado: (2021) -
Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces
por: Mesbah Nadia, et al.
Publicado: (2021)