Investigation on depth-dependent properties and benthic effluxes of dissolved organic matter (DOM) in pore water from plateau lake sediments
Dissolved organic matter (DOM) in sediment pore water plays a key role in lake water quality, complexation of the contaminants, biogeochemical cycles, and even climate. To better understand the vertical dynamics and characteristics of DOM among pore water profiles, we investigated concentrations, ch...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/09387f501f7d4d3bb2904a91577e2ea1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:09387f501f7d4d3bb2904a91577e2ea1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:09387f501f7d4d3bb2904a91577e2ea12021-12-01T04:47:26ZInvestigation on depth-dependent properties and benthic effluxes of dissolved organic matter (DOM) in pore water from plateau lake sediments1470-160X10.1016/j.ecolind.2021.107500https://doaj.org/article/09387f501f7d4d3bb2904a91577e2ea12021-06-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1470160X21001655https://doaj.org/toc/1470-160XDissolved organic matter (DOM) in sediment pore water plays a key role in lake water quality, complexation of the contaminants, biogeochemical cycles, and even climate. To better understand the vertical dynamics and characteristics of DOM among pore water profiles, we investigated concentrations, chemical structures, and benthic fluxes of DOM in plateau lake sediments via stoichiometric analysis, ultraviolet–visible (UV–vis) absorption, three-dimensional fluorescence matrix spectroscopy (EEMs), and parallel factor model (PARAFAC). The results revealed that dissolved organic carbon (DOC), concurrent with chromophoric DOM (CDOM) and fluorescent DOM (FDOM), tended to accumulate in the anaerobic deeper layers. These trends also demonstrated a good agreement with the ammonium nitrogen (NH4+-N) concentration, implying that the pathway of DOM dynamics was closely related to the redox state. The EEMs-PARAFAC model revealed that DOM in pore water mostly consisted of two terrestrial humic-like components (average contribution:> 60%) followed by microbial and tryptophan-like components, respectively. Terrestrial humic-like components were relatively stable, and their abundance was positively correlated with the FDOM level (p < 0.05). The changes of aromatic, molecular weight, and humification degree of DOM were possibly driven by microbial activities at different depths. Moreover, benthic flux estimations indicated that DOM and the total dissolved nitrogen (TDN) in inland sediments were potential sources for the overlying water and possibly affected the quality and ecological safety of lake water bodies.Shuaidong LiLingfeng LuYongfang WuZhilong ZhaoChangchun HuangTao HuangHao YangXiaohua MaQuanliang JiangElsevierarticlePore waterDissolved organic matterUV–vis absorption spectroscopyThree-dimensional fluorescence matrix spectroscopyDepthEcologyQH540-549.5ENEcological Indicators, Vol 125, Iss , Pp 107500- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Pore water Dissolved organic matter UV–vis absorption spectroscopy Three-dimensional fluorescence matrix spectroscopy Depth Ecology QH540-549.5 |
spellingShingle |
Pore water Dissolved organic matter UV–vis absorption spectroscopy Three-dimensional fluorescence matrix spectroscopy Depth Ecology QH540-549.5 Shuaidong Li Lingfeng Lu Yongfang Wu Zhilong Zhao Changchun Huang Tao Huang Hao Yang Xiaohua Ma Quanliang Jiang Investigation on depth-dependent properties and benthic effluxes of dissolved organic matter (DOM) in pore water from plateau lake sediments |
description |
Dissolved organic matter (DOM) in sediment pore water plays a key role in lake water quality, complexation of the contaminants, biogeochemical cycles, and even climate. To better understand the vertical dynamics and characteristics of DOM among pore water profiles, we investigated concentrations, chemical structures, and benthic fluxes of DOM in plateau lake sediments via stoichiometric analysis, ultraviolet–visible (UV–vis) absorption, three-dimensional fluorescence matrix spectroscopy (EEMs), and parallel factor model (PARAFAC). The results revealed that dissolved organic carbon (DOC), concurrent with chromophoric DOM (CDOM) and fluorescent DOM (FDOM), tended to accumulate in the anaerobic deeper layers. These trends also demonstrated a good agreement with the ammonium nitrogen (NH4+-N) concentration, implying that the pathway of DOM dynamics was closely related to the redox state. The EEMs-PARAFAC model revealed that DOM in pore water mostly consisted of two terrestrial humic-like components (average contribution:> 60%) followed by microbial and tryptophan-like components, respectively. Terrestrial humic-like components were relatively stable, and their abundance was positively correlated with the FDOM level (p < 0.05). The changes of aromatic, molecular weight, and humification degree of DOM were possibly driven by microbial activities at different depths. Moreover, benthic flux estimations indicated that DOM and the total dissolved nitrogen (TDN) in inland sediments were potential sources for the overlying water and possibly affected the quality and ecological safety of lake water bodies. |
format |
article |
author |
Shuaidong Li Lingfeng Lu Yongfang Wu Zhilong Zhao Changchun Huang Tao Huang Hao Yang Xiaohua Ma Quanliang Jiang |
author_facet |
Shuaidong Li Lingfeng Lu Yongfang Wu Zhilong Zhao Changchun Huang Tao Huang Hao Yang Xiaohua Ma Quanliang Jiang |
author_sort |
Shuaidong Li |
title |
Investigation on depth-dependent properties and benthic effluxes of dissolved organic matter (DOM) in pore water from plateau lake sediments |
title_short |
Investigation on depth-dependent properties and benthic effluxes of dissolved organic matter (DOM) in pore water from plateau lake sediments |
title_full |
Investigation on depth-dependent properties and benthic effluxes of dissolved organic matter (DOM) in pore water from plateau lake sediments |
title_fullStr |
Investigation on depth-dependent properties and benthic effluxes of dissolved organic matter (DOM) in pore water from plateau lake sediments |
title_full_unstemmed |
Investigation on depth-dependent properties and benthic effluxes of dissolved organic matter (DOM) in pore water from plateau lake sediments |
title_sort |
investigation on depth-dependent properties and benthic effluxes of dissolved organic matter (dom) in pore water from plateau lake sediments |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/09387f501f7d4d3bb2904a91577e2ea1 |
work_keys_str_mv |
AT shuaidongli investigationondepthdependentpropertiesandbenthiceffluxesofdissolvedorganicmatterdominporewaterfromplateaulakesediments AT lingfenglu investigationondepthdependentpropertiesandbenthiceffluxesofdissolvedorganicmatterdominporewaterfromplateaulakesediments AT yongfangwu investigationondepthdependentpropertiesandbenthiceffluxesofdissolvedorganicmatterdominporewaterfromplateaulakesediments AT zhilongzhao investigationondepthdependentpropertiesandbenthiceffluxesofdissolvedorganicmatterdominporewaterfromplateaulakesediments AT changchunhuang investigationondepthdependentpropertiesandbenthiceffluxesofdissolvedorganicmatterdominporewaterfromplateaulakesediments AT taohuang investigationondepthdependentpropertiesandbenthiceffluxesofdissolvedorganicmatterdominporewaterfromplateaulakesediments AT haoyang investigationondepthdependentpropertiesandbenthiceffluxesofdissolvedorganicmatterdominporewaterfromplateaulakesediments AT xiaohuama investigationondepthdependentpropertiesandbenthiceffluxesofdissolvedorganicmatterdominporewaterfromplateaulakesediments AT quanliangjiang investigationondepthdependentpropertiesandbenthiceffluxesofdissolvedorganicmatterdominporewaterfromplateaulakesediments |
_version_ |
1718405763234267136 |