Large-scale genome-wide enrichment analyses identify new trait-associated genes and pathways across 31 human phenotypes
In genome-wide association studies, variant-level associations are hard to identify and can be difficult to interpret biologically. Here, the authors develop a new model-based enrichment analysis method, and apply it to identify new associated genes, pathways and tissues across 31 human phenotypes.
Enregistré dans:
Auteurs principaux: | Xiang Zhu, Matthew Stephens |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/09415081d3744dba8f88983498596104 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Genome-wide comparative analyses of correlated and uncorrelated phenotypes identify major pleiotropic variants in dairy cattle
par: Ruidong Xiang, et autres
Publié: (2017) -
Genome-wide association analyses identify genotype-by-environment interactions of growth traits in Simmental cattle
par: Camila U. Braz, et autres
Publié: (2021) -
An extreme-phenotype genome‐wide association study identifies candidate cannabinoid pathway genes in Cannabis
par: Matthew T. Welling, et autres
Publié: (2020) -
Large scale analysis of phenotype-pathway relationships based on GWAS results.
par: Aharon Brodie, et autres
Publié: (2014) -
Genome-wide fine-mapping identifies pleiotropic and functional variants that predict many traits across global cattle populations
par: Ruidong Xiang, et autres
Publié: (2021)