Multi-label Learning for Predicting the Activities of Antimicrobial Peptides
Abstract Antimicrobial peptides (AMPs) are peptide antibiotics with a broad spectrum of antimicrobial activities. Activity prediction of AMPs from their amino acid sequences is of great therapeutic importance but imposes challenges on prediction methods due to label interactions. In this paper we pr...
Guardado en:
Autores principales: | Pu Wang, Ruiquan Ge, Liming Liu, Xuan Xiao, Ye Li, Yunpeng Cai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0946ddd40db14a0cb6dc44b493799109 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prediction of antibacterial activity from physicochemical properties of antimicrobial peptides.
por: Manuel N Melo, et al.
Publicado: (2011) -
A deep-learning framework for multi-level peptide–protein interaction prediction
por: Yipin Lei, et al.
Publicado: (2021) -
Multi-Label Classification for Power Quality Disturbances by Integrated Deep Learning
por: Xiangui Xiao, et al.
Publicado: (2021) -
Prediction of antimicrobial peptides based on sequence alignment and feature selection methods.
por: Ping Wang, et al.
Publicado: (2011) -
Insect antimicrobial peptides: isolation, separation and antimicrobial activity
por: Remizov E. K., et al.
Publicado: (2021)